Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân tích, bình luận và phát triển đề tham khảo môn Toán THPT Quốc gia 2019

Tài liệu gồm 54 trang hướng dẫn giải, phân tích, bình luận, phát triển các câu hỏi và bài toán vận dụng cao (từ câu 39 đến câu 50) trong đề tham khảo môn Toán kỳ thi THPT Quốc gia năm 2019, tài liệu được biên soạn bởi tập thể quý thầy, cô giáo Nhóm Toán VD – VDC. Trích dẫn lời mở đầu tài liệu phân tích, bình luận và phát triển đề tham khảo môn Toán THPT Quốc gia 2019: Làm toán không vội vàng được, phải làm từ từ để hiểu hết được bản chất của nó và ý nghĩa của nó trong thực tiễn. Đã đến lúc phải trả lại danh hiệu cho em nó “Toán học là nữ hoàng của mọi bộ môn khoa học”. Kỳ thi THPT Quốc gia từ năm 2016 – 2018, bài thi môn Toán chuyển từ thi tự luận sang hình thức thi trắc nghiệm nên trong cách dạy, cách kiểm tra đánh giá, cách ra đề cũng thay đổi. Sự thay đổi đó nằm trong toàn bộ chương trình môn Toán nói chung và trong kỹ năng giải toán nói riêng. Bước sang kỳ thi THPT Quốc gia năm 2018 – 2019 đánh giá sự đổi mới toàn bộ trong nội dung ra đề của Bộ Giáo Dục với mục tiêu chính là hạn chế “Casio hóa”, tăng cường các câu hỏi Vận dụng và Vận dụng cao nhằm phân hóa được học sinh ở các ngưỡng trung bình – khá – giỏi. Với mong muốn đưa ra những nhận định, những phân tích cho đề Tham Khảo 2019 vừa được BGD công bố, để giúp học sinh tiếp cận gần hơn với những bài toán khó đó, tập thể những thầy cô chúng tôi sau rất nhiều tâm huyết xin được trân trọng giới thiệu đến bạn đọc “Phân tích, bình luận và phát triển đề Tham Khảo 2019 môn Toán”.

Nguồn: toanmath.com

Đọc Sách

Phân tích đề minh họa kỳ thi tốt nghiệp THPT năm 2022 môn Toán
Tài liệu gồm 87 trang, được biên soạn bởi tập thể quý thầy, cô giáo trường THPT An Phước, tỉnh Ninh Thuận: 1. Trần Ngọc Hùng; 2. Ngụy Như Thái; 3. Quảng Đại Hạn; 4. Quảng Đại Phước; 5. Đàng Xuân Phi; 6. Quảng Đại Mưa; 7. Nguyễn Văn Hồng … hướng dẫn phân tích đề minh họa kỳ thi tốt nghiệp THPT năm 2022 môn Toán. PHẦN 1 : MA TRẬN ĐỀ MINH HỌA BỘ GIÁO DỤC 2022. A Khung ma trận. B Bảng mô tả chi tiết nội dung câu hỏi. Câu 1 (2D4Y1-1). Xác định các yếu tố cơ bản của số phức. Câu 2 (2H3Y1-3). Phương trình mặt cầu (xác định tâm, bán kính, viết PT mặt cầu đơn giản, vị trí tương đối hai mặt cầu, điểm đến mặt cầu, đơn giản). Câu 3 (2D1Y5-8). Câu hỏi lý thuyết. Câu 4 (2H2Y2-1). Bài toán sử dụng định nghĩa, tính chất, vị trí tương đối. Câu 5 (2D3Y1-1). Định nghĩa, tính chất và nguyên hàm cơ bản. Câu 6 (2D1Y2-2). Tìm cực trị dựa vào BBT, đồ thị. Câu 7 (2D2Y6-1). Bất phương trình cơ bản. Câu 8 (2H1Y3-2). Tính thể tích các khối đa diện. Câu 9 (2D2Y2-1). Tập xác định của hàm số chứa hàm lũy thừa. Câu 10 (2D2Y5-1). Phương trình cơ bản. Câu 11 (2D3Y2-1). Định nghĩa, tính chất và tích phân cơ bản. Câu 12 (2D4Y2-1). Thực hiện phép tính. Câu 13 (2H3Y2-2). Xác định VTPT. Câu 14 (2H3Y1-1). Tìm tọa độ điểm, véc-tơ liên quan đến hệ trục. Câu 15 (2D4Y1-2). Biểu diễn hình học cơ bản của số phức. Câu 16 (2D1Y4-1). Bài toán xác định các đường tiệm cận của hàm số (không chứa tham số) hoặc biết BBT, đồ thị. Câu 17 (2D2Y3-2). Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít. Câu 18 (2D1Y5-1). Nhận dạng đồ thị, bảng biến thiên. Câu 19 (2H3Y3-3). Tìm tọa độ điểm liên quan đến đường thẳng. Câu 20 (1D2Y2-1). Bài toán chỉ sử dụng P hoặc C hoặc A. Câu 21 (2H1Y3-2). Tính thể tích các khối đa diện. Câu 22 (2D2Y4-2). Tính đạo hàm hàm số mũ, hàm số lô-ga-rít. Câu 23 (2D1Y1-2). Xét tính đơn điệu dựa vào bảng biến thiên, đồ thị. Câu 24 (2H2Y1-2). Diện tích xung quanh, diện tích toàn phần, độ dài đường sinh, chiều cao,. Câu 25 (2D3Y2-1). Định nghĩa, tính chất và tích phân cơ bản. Câu 26 (1D3Y3-3). Tìm hạng tử trong cấp số cộng. Câu 27 (2D3Y1-1). Định nghĩa, tính chất và nguyên hàm cơ bản. Câu 28 (2D1Y2-2). Tìm cực trị dựa vào BBT, đồ thị. Câu 29 (2D1B3-1). GTLN, GTNN trên đoạn [a ;b ]. Câu 30 (2D1B1-1). Xét tính đơn điệu của hàm số cho bởi công thức. Câu 31 (2D2B3-2). Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít. Câu 32 (1H3B2-3). Xác định góc giữa hai đường thẳng (dùng định nghĩa). Câu 33 (2D3B2-1). Định nghĩa, tính chất và tích phân cơ bản. Câu 34 (2H3B3-7). Bài toán liên quan giữa đường thẳng – mặt phẳng – mặt cầu. Câu 35 (2D4B3-2). Xác định các yếu tố cơ bản của số phức qua các phép toán. Câu 36 (1H3B5-3). Khoảng cách từ một điểm đến một mặt phẳng. Câu 37 (1D2B5-4). Tính xác suất bằng công thức nhân. Câu 38 (2H3B3-2). Viết phương trình đường thẳng. Câu 39 (2D2K6-3). Phương pháp đặt ẩn phụ. Câu 40 (2D1K5-4). Sự tương giao của hai đồ thị (liên quan đến tọa độ giao điểm). Câu 41 (2D3K1-1). Định nghĩa, tính chất và nguyên hàm cơ bản. Câu 42 (2H1K3-4). Các bài toán khác(góc, khoảng cách,…) liên quan đến thể tích khối đa diện. Câu 43 (2D4K4-2). Định lí Viet và ứng dụng. Câu 44 (2D4G5-1). Phương pháp hình học tìm cực trị số phức. Câu 45 (2D3G3-1). Diện tích hình phẳng được giới hạn bởi các đồ thị. Câu 46 (2H3K3-2). Viết phương trình đường thẳng. Câu 47 (2H2K1-1). Thể tích khối nón, khối trụ. Câu 48 (2D2G6-5). Phương pháp hàm số, đánh giá. Câu 49 (2H2G2-6). Bài toán tổng hợp về khối nón, khối trụ, khối cầu. Câu 50 (2D1G2-1). Tìm cực trị của hàm số cho bởi công thức. PHẦN 2 : PHÂN TÍCH ĐỀ MINH HỌA BỘ GIÁO DỤC 2022. PHẦN 3 : BÀI TẬP CHO HỌC SINH RÈN LUYỆN.
Phát triển đề minh họa ôn thi TN THPT 2022 môn Toán
Tài liệu gồm 57 trang, tuyển chọn 367 câu hỏi và bài toán trắc nghiệm tương tự đề minh họa tốt nghiệp THPT 2022 môn Toán, giúp học sinh lớp 12 ôn tập để chuẩn bị cho kỳ thi tốt nghiệp THPT môn Toán năm học 2021 – 2022. Trích dẫn tài liệu phát triển đề minh họa ôn thi TN THPT 2022 môn Toán: + Cho hàm số y = f(x) xác định trên R có f(−3) > 8, f(4) > 9 2, f(2) < 1 2. Biết rằng hàm số y = f0(x) có đồ thị như hình vẽ bên. Hỏi đồ thị hàm số y = 2f(x) − (x − 1)2 có bao nhiêu điểm cực trị? + Trong không gian Oxyz, cho hai điểm A(1; 3; 0), B(−3; 1; 4) và đường thẳng ∆ : x − 2 −1 = y + 1 1 = z − 2 3. Xét khối nón (N) có đỉnh có tọa độ nguyên thuộc đường thẳng ∆ và ngoại tiếp mặt cầu đường kính AB. Khi (N) có thể tích nhỏ nhất thì tung độ đỉnh của khối nón (N) bằng? + Cho hàm số f (x) = x4 + ax3 + bx2 + cx + d (a, b, c, d ∈ R) có ba điểm cực trị là −1; 1; 2. Hàm số g (x) = mx3 + nx2 + px + q (m, n, p, q ∈ R) là hàm số đạt cực trị tại −1; 1 và và có đồ thị đi qua hai điểm cực trị có hoành độ −1; 1 của đồ thị hàm số y = f(x). Diện tích hình phẳng giới hạn bởi hai đường y = f (x) và y = g (x) bằng? + Cho hai hộp đựng bi, đựng 2 loại bi là bi trắng và bi đen, tổng số bi trong hộp là 20 bi và hộp thứ nhất đựng ít bi hơn hộp thứ hai. Lấy ngẫu nhiên từ mỗi hộp 1 bi. Cho biết xác suất để lấy được 2 bi đen là 55 84, tính xác suất để lấy được 2 bi trắng? + Cho hình lăng trụ đứng ABC · A0B0C0 có đáy ABC là tam giác vuông cân tại B và AB = 4 (tham khảo hình bên). A B C A0 B0 C0. Khoảng cách từ C đến mặt phẳng (ABB0A0) bằng?
25 đề rèn luyện hướng đến kỳ thi tốt nghiệp THPT môn Toán năm học 2021 - 2022
Tài liệu gồm 462 trang, tuyển tập 25 đề rèn luyện hướng đến kỳ thi tốt nghiệp THPT môn Toán năm học 2021 – 2022, có đáp án và lời giải chi tiết. Lời giới thiệu : Chúng tôi từng là học sinh, chúng tôi hiểu được những áp lực của các bạn hiện tại lúc này. Nỗi áp lực về Kinh tế cũng một phần nào làm các bạn trở nên thiệt thòi so với các bạn đồng trang lứa. Vì lý do đó, chúng tôi – những người trẻ nhiệt huyết đến từ “Nhóm Toán anh Dúi”, mong muốn góp một phần nhỏ sức sáng tạo, lòng chân thành và niềm tin tưởng gửi đến các bạn 2k4 năm nay. Tài liệu các bạn đọc bao gồm 25 đề thi thử mà chúng tôi đã soạn và cho các thành viên nhóm chúng tôi thi thử hàng ngày, hàng tuần. Với cách viết cổ điển, chi tiết, chăm chút từng lời giải, phát huy thêm phần ý tưởng sáng tạo “các cách giải nhanh, CASIO” ở một số bài toán. Chúng tôi hy vọng đến tay các bạn, quyển tài liệu này có thể trở nên hữu ích thay vì là một sấp giấy vật vờ trên một góc học tập không được xem đến. Trong Ebook, chúng tôi có sáng tạo và nghiên cứu thêm một số dạng bài tập của các tài liệu từ các Group học tập, các đề thi thử, các tài liệu của quý Thầy, Cô, nhưng với mục đích chỉ vì mong muốn góp một phần sức của mình trong Ngành Giáo dục nước nhà. Tất nhiên, trong quá trình biên soạn, không thể nào tránh khỏi việc sai sót, thiếu sót. Hy vọng chúng tôi vinh hạnh nhận được những lời góp ý chân tình của quý độc giả thông qua thông tin liên hệ dưới đây. Bản Ebook được phát hành miễn phí nên mọi hoạt động sử dụng tài liệu vì mục đích thương mại đều không được cho phép. Chúng tôi xin chân thành cảm ơn quý độc giả.
Chuyên đề trong đề thi tốt nghiệp THPT Quốc gia môn Toán 2017 - 2021
Tài liệu gồm 199 trang, tuyển tập các chuyên đề trong đề thi tốt nghiệp THPT Quốc gia môn Toán 2017 – 2021. MỤC LỤC : PHẦN I. ĐẠI SỐ VÀ GIẢI TÍCH – TRANG 2. Chuyên đề 1. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số 3. Chuyên đề 2. Hàm số lũy thừa, hàm số mũ và hàm số lôgarit 68. Chuyên đề 3. Nguyên hàm. Tích phân và ứng dụng 88. Chuyên đề 4. Số phức 116. Chuyên đề 5. Xác suất 128. Chuyên đề 6. Cấp số cộng – cấp số nhân 133. Chuyên đề 7. Giới hạn dãy số – hàm số 134. PHẦN II. HÌNH HỌC – TRANG 135. Chuyên đề 1. Khối đa diện 136. Chuyên đề 2. Mặt nón, mặt trụ, mặt cầu 146. Chuyên đề 3. Phương pháp toạ độ trong không gian 157. Chuyên đề 4. Góc – khoảng cách trong không gian 183.