Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 12 năm 2018 - 2019 trường THPT chuyên Hùng Vương - Phú Thọ

giới thiệu đến bạn đọc bản lời giải chi tiết đề khảo sát chất lượng Toán 12 năm 2018 – 2019 trường THPT chuyên Hùng Vương – Phú Thọ, đề nhằm đánh giá năng lực môn Toán của học sinh giai đoạn khởi động năm học, đồng thời giúp học sinh ôn lại các kiến thức Toán 10, Toán sau kỳ nghỉ hè kéo dài. Lời giải chi tiết được biên soạn và trình bày bởi quý thầy, cô giáo nhóm Strong Team Toán VD-VDC. Trích dẫn đề khảo sát chất lượng Toán 12 năm 2018 – 2019 trường THPT chuyên Hùng Vương – Phú Thọ : + Một vật chuyển động trong 3 giờ với vận tốc v (km/h) phụ thuộc thời gian t(h) có đồ thị là một phần của đường parabol có đỉnh I (2;9) và trục đối xứng song song với trục tung như hình vẽ. Vận tốc tức thời của vật tại thời điểm 2 giờ 30 phút sau khi vật bắt đầu chuyển động gần bằng giá trị nào nhất trong các giá trị sau? [ads] + Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 24 gam hương liệu, 9 lít nước và 210 gam đường để pha chế nước ngọt loại I và nước ngọt loại II. Để pha chế 1 lít nước ngọt loại I cần 10 gam đường, 1 lít nước và 4 gam hương liệu. Để pha chế 1 lít nước ngọt loại II cần 30 gam đường, 1 lít nước và 1 gam hương liệu. Mỗi lít nước ngọt loại I được 80 điểm thưởng, mỗi lít nước ngọt loại II được 60 điểm thưởng. Hỏi số điểm thưởng cao nhất có thể của mỗi đội trong cuộc thi là bao nhiêu? + Một người muốn có 1 tỉ tiền tiết kiệm sau 6 năm gửi ngân hàng bằng cách bắt đầu từ ngày 01/01/2019 đến 31/12/2024, vào ngày 01/01 hàng năm người đó gửi vào ngân hàng một số tiền bằng nhau với lãi suất ngân hàng là 7% /1 năm (tính từ ngày 01/01 đến ngày 31/12) và lãi suất hàng năm được nhập vào vốn. Hỏi số tiền mà người đó phải gửi vào ngân hàng hàng năm là bao nhiêu (với giả thiết lãi suất không thay đổi và số tiền được làm tròn đến đơn vị đồng)?

Nguồn: toanmath.com

Đọc Sách

Đề thi định kỳ Toán 12 lần 1 năm 2020 - 2021 trường Việt Yên 1 - Bắc Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi định kỳ Toán 12 lần 1 năm học 2020 – 2021 trường THPT Việt Yên số 1, tỉnh Bắc Giang; đề thi được biên soạn theo hình thức 100% trắc nghiệm với 50 câu hỏi và bài toán, đề gồm có 05 trang, thời gian làm bài 90 phút, đề thi có đáp án mã đề 121, 122, 123, 124. Trích dẫn đề thi định kỳ Toán 12 lần 1 năm 2020 – 2021 trường Việt Yên 1 – Bắc Giang : + Cắt khối lăng trụ ABC.A’B’C’ bởi các mặt phẳng (AB’C’) và (ABC’) ta được những khối đa diện nào? A. Hai khối tứ diện và hai khối chóp tứ giác. B. Ba khối tứ diện. C. Hai khối tứ diện và một khối chóp tứ giác. D. Một khối tứ diện và hai khối chóp tứ giác. + Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác vuông cân, AB = BC = 2a. Tam giác A’AC cân tại A’ và nằm trong mặt phẳng vuông góc với mặt đáy. Thể tích của khối lăng trụ ABC.A’B’C’ bằng 2a3. Tính khoảng cách giữa hai đường thẳng AB và CC’. + Cho tập hợp A có 7 phần tử. Hỏi tập A có bao nhiêu tập con có nhiều hơn một phần tử?
Đề khảo sát Toán 12 lần 2 năm 2020 - 2021 trường THPT chuyên Thái Bình
Ngày … tháng 01 năm 2021, trường THPT chuyên Thái Bình, tỉnh Thái Bình tổ chức kỳ thi kiểm tra chất lượng học tập môn Toán 12 năm học 2020 – 2021 lần thứ hai, nhằm giúp học sinh khối 12 rèn luyện kiến thức thường xuyên để hướng đến kỳ thi tốt nghiệp THPT Quốc gia 2021 môn Toán. Đề khảo sát Toán 12 lần 2 năm 2020 – 2021 trường THPT chuyên Thái Bình mã đề 366 gồm 06 trang, đề được biên soạn theo hình thức đề thi 100% trắc nghiệm với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án. Trích dẫn đề khảo sát Toán 12 lần 2 năm 2020 – 2021 trường THPT chuyên Thái Bình : + Ông An muốn xây một bể chứa nước dạng hình hộp chữ nhật, phần nắp trên ông để trống một ô có diện tích bằng 20% diện tích của đáy bể. Biết đáy bể là một hình chữ nhật có chiều dài gấp đôi chiều rộng, bể có thể tích chứa tối đa 10m3 nước và giá tiền thuê nhân công là 500000 đồng / m2. Số tiền ít nhất mà ông phải trả cho nhân công gần nhất với đáp án nào dưới đây? + Cho hai khối cầu đồng tâm có bán kính là 1 và 4. Xét hình chóp S.A1A2A3A4A5A6 có đỉnh S thuộc mặt cầu nhỏ và các đỉnh Ai (i = 1..6) thuộc mặt cầu lớn. Tìm giá trị lớn nhất của thể tích khối chóp S.A1A2A3A4A5A6. + Một nhóm học sinh trường THPT chuyên Thái Bình có 8 học sinh nữ và 4 học sinh nam. Xếp ngẫu nhiên nhóm học sinh này thành một hàng dọc. Tính xác suất sao cho không có hai bạn nam nào đứng cạnh nhau.
Đề khảo sát Toán 12 lần 2 năm 2020 - 2021 trường Thuận Thành 1 - Bắc Ninh
Đề khảo sát Toán 12 lần 2 năm 2020 – 2021 trường Thuận Thành 1 – Bắc Ninh gồm 07 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian làm bài 90 phút, kỳ thi nhằm kiểm tra kiến thức thường xuyên, mục tiêu hướng đến kỳ thi tốt nghiệp Trung học Phổ thông môn Toán năm học 2020 – 2021. Trích dẫn đề khảo sát Toán 12 lần 2 năm 2020 – 2021 trường Thuận Thành 1 – Bắc Ninh : + Một sinh viên muốn mua một cái laptop có giá 12,5 triệu đồng nên mỗi tháng gửi tiết kiệm vào ngân hàng 750.000 đồng theo hình thức lãi suất kép với lãi suất 0,72% một tháng. Hỏi sau ít nhất bao nhiêu tháng sinh viên đó có thể dùng số tiền gửi tiết kiệm để mua được laptop? + Cho khối chóp S.ABC có thể tích V. Điểm M nằm trên cạnh SB. Thiết diện qua M song song với SA và BC chia khối chóp S.ABC thành hai phần. Gọi V1 là thể tích phần khối chóp S.ABC chứa cạnh SA. Biết V1/V = 20/7. Tỉ số SM/SB bằng? + Cho một hình nón đỉnh S có độ dài đường sinh bằng 10cm, bán kính đáy bằng 6cm. Cắt hình nón đã cho bởi một mặt phẳng song song với mặt phẳng chứa đáy được một hình nón (N) đỉnh S có chiều cao bằng 16/5cm. Tính diện tích xung quay của khối nón (N).
Đề khảo sát chất lượng lần 2 Toán 12 năm 2020 - 2021 trường Quế Võ 1 - Bắc Ninh
Ngày … tháng 01 năm 2021, trường THPT Quế Võ 1, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng (KSCL) môn Toán lớp 12 năm học 2020 – 2021 lần thứ hai. Đề khảo sát chất lượng lần 2 Toán 12 năm 2020 – 2021 trường Quế Võ 1 – Bắc Ninh được biên soạn theo hình thức trắc nghiệm, đề gồm 06 trang với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, đề thi có đáp án mã đề 101, 239, 353, 477, 593, 615, 737, 859, 971, 193, 275, 397. Trích dẫn đề khảo sát chất lượng lần 2 Toán 12 năm 2020 – 2021 trường Quế Võ 1 – Bắc Ninh : + Trong Lễ tổng kết Tháng thanh niên, có 10 đoàn viên xuất sắc gồm 5 nam và 5 nữ được tuyên dương khen thưởng. Các đoàn viên này được sắp xếp ngẫu nhiên thành một hàng ngang trên sân khấu để nhận giấy khen. Tính xác suất để trong hàng ngang trên không có bất kì 2 bạn nữ nào đứng cạnh nhau. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I, cạnh bên SA vuông góc với đáy. Điểm cách đều các đỉnh của hình chóp là: A. trung điểm SD. B. trung điểm SB. C. Điểm nằm trên đường thẳng d // SA và không thuộc SC. D. trung điểm SC. + Cho tam giác ABC có BC = a, CA = b, AB = c. Nếu a, b, c theo thứ tự lập thành một cấp số nhân thì: A. lnsin A.lnsin C = 2lnsin B. B. lnsin A + lnsin C = 2lnsin B. C. ln sin A.ln sin C = (ln sin B)^2. D. lnsin A + lnsin C = ln (2sin B).