Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK2 Toán 10 năm 2018 - 2019 trường Phạm Văn Đồng - Quảng Ngãi

giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 10 đề thi HK2 Toán 10 năm 2018 – 2019 trường Phạm Văn Đồng – Quảng Ngãi, kỳ thi nhằm kiểm tra chất lượng môn Toán lớp 10 trong học kỳ vừa qua, đề thi có mã đề 158, đề gồm 4 trang với 35 câu trắc nghiệm và 3 câu tự luận, thời gian học sinh làm bài kiểm tra học kỳ là 90 phút, đề thi có đáp án và lời giải chi tiết. Ma trận đề thi HK2 Toán 10 năm 2018 – 2019 trường Phạm Văn Đồng – Quảng Ngãi: + Tập xác định của bất phương trình. + Tập nghiệm của bất phương trình bậc nhất hai ẩn, bài toán thực tế. + Xét dấu nhị thức bậc nhất, xét dấu tam thức bậc hai. + Hướng dẫn giải phương trình bằng cách lập bảng xét dấu. + Tìm tham số m để biểu thức luôn dương hoặc luôn âm. + Tìm tham số m để nghiệm thỏa mãn điều kiện cho trước. + Biểu diễn nghiệm lên đường tròn lượng giác thuộc góc phần tư thứ bao nhiêu, đổi độ sang radian. + Tính độ dài cung tròn. + Mối liên hệ các góc và cung có liên quan đặc biệt. [ads] + Công thức lượng giác, tính giá trị sin2a, sử dụng công thức cộng. + Rút gọn biểu thức lượng giác. + Nhận dạng tam giác. + Rút biểu thức có chứa các góc. + Tính diện tích tam giác, định lý sin, công thức đường trung tuyến. + Tìm véc tơ chỉ phương của một véctơ, tọa độ một điểm có thuộc đường thẳng hay không? + Viết phương trình đường thẳng song song với một đường thẳng cho trước. + Xét vị trí tương đối giữa hai đường thẳng. + Tính góc giữa hai đường thẳng. + Tìm tọa độ hình chiếu của một điểm lên một đường thẳng. + Nhận dạng phương trình đường tròn. + Vị Vị trí tương đối giữa đường thẳng và đường tròn. + Viết phương trình tiếp tuyến đi qua một điểm cho trước thuộc đường tròn. + Viết phương trình tiếp tuyến cắt đường tròn theo một dây cung cho trước. + Tìm các yếu tố của một Elip. + Viết phương trình chính tắc của (E). + Giải bất phương trình chứa dấu giá trị tuyệt đối. + Giải bất phương trình bằng cách lập bảng xét dấu. + Cho một giá tr lượng giác, tính các giá trị lượng giác còn lại. + Viết phương trình đường thẳng kèm theo yếu tố đường tròn. + Giải phương trình mức độ vận dụng cao.

Nguồn: toanmath.com

Đọc Sách

Đề thi HK2 Toán 10 năm 2018 - 2019 trường THPT Nguyễn Chí Thanh - TP HCM
Sau khi học sinh khối lớp 10 hoàn thành chương trình Toán 10, trường THPT Nguyễn Chí Thanh, thành phố Hồ Chí Minh đã tổ chức kì thi kiểm tra chất lượng học kì 2 môn Toán 10 năm học 2018 – 2019, kỳ thi nhằm tổng kết lại các kiến thức Toán 10 học sinh đã học trong thời gian vừa qua, điểm số trong kỳ thi này cùng các điểm số các em đã đạt được trước đó sẽ là cơ sở để giáo viên xếp loại học lực Toán 10. Đề thi HK2 Toán 10 năm 2018 – 2019 trường THPT Nguyễn Chí Thanh – TP HCM được biên soạn theo dạng đề tự luận hoàn toàn, đề gồm 01 trang với 07 bài toán, học sinh có 90 phút để hoàn thành bài thi HK2 Toán 10, đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi HK2 Toán 10 năm 2018 – 2019 trường THPT Nguyễn Chí Thanh – TP HCM : + Cho đường thẳng d: x = 2 + 3t, y = 1 + t, (t thuộc R) và hai điểm A(1;2), B(1;-4). 1) Tìm tọa độ trung điểm M của AB và viết phương trình đường trung trực của đoạn thẳng AB. 2) Viết phương trình đường tròn có tâm thuộc đường thẳng d và đi qua 2 điểm A. [ads] + Tìm m để bất phương trình (m – 1)x^2 – 2(3m + 1)x + 2m – 1 ≤ 0 có tập nghiệm là R. + Trong mặt phẳng Oxy cho đường thẳng d: x – y + 1 = 0 và đường tròn (C) có phương trình: x^2 + y^2 – 2x + 2y – 2 = 0. 1) Viết phương trình tiếp tuyến Δ1 của (C) biết Δ1 song song với d. 2) Viết phương trình đường thẳng Δ2 vuông góc với d và cắt (C) tại hai điểm phân biệt M, N sao cho tam giác IMN có diện tích bằng 2, với I là tâm của đường tròn (C).
Đề thi học kỳ 2 Toán 10 năm học 2017 - 2018 sở GD và ĐT Bắc Giang
Đề thi học kỳ 2 Toán 10 năm học 2017 – 2018 sở GD và ĐT Bắc Giang mã đề 101 được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, đề gồm 20 câu hỏi trắc nghiệm và 3 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi học kỳ 2 Toán 10 năm học 2017 – 2018 : + Cho tam giác ABC, có độ dài ba cạnh là BC = a, AC = b, AB = c. Gọi ma là độ dài đường trung tuyến kẻ từ đỉnh A, R là bán kính đường tròn ngoại tiếp tam giác và S là diện tích tam giác đó. Mệnh đề nào sau đây sai? [ads] + Trong mặt phẳng với hệ tọa độ Oxy, cho elíp (E) có phương trình chính tắc là  x^2/25 + y^2/9 = 1. Tiêu cự của (E) là? + Cho đường thẳng ∆: 3x – 4y – 19 = 0 và đường tròn (C): (x – 1)^2 + (y – 1)^2 = 25. Biết đường thẳng ∆ cắt (C) tại hai điểm phân biệt A và B, khi đó độ dài đoạn thẳng AB là?
Đề thi học kỳ 2 Toán 10 năm 2017 - 2018 trường THPT Chu Văn An - Hà Nội
Đề thi học kỳ 2 Toán 10 năm 2017 – 2018 trường THPT Chu Văn An – Hà Nội gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi học kỳ 2 Toán 10 năm 2017 – 2018 : + Cho bất phương trình (m + 2)x^2 – 2mx + 1 > 0 (với m là tham số). a) Giải bất phương trình khi m = 2. b) Tìm m để bất phương trình nghiệm đúng với mọi x ∈ R. [ads] + Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng Δ: x + 2y – 7 = 0 và điểm I(2;4). a) Viết phương trình của đường thẳng d đi qua I và song song với đường thẳng Δ. b) Viết phương trình đường tròn có tâm I và tiếp xúc với đường thẳng Δ. c) Tìm tọa độ điểm M thuộc trục tung sao cho d(M,Δ) = √5. + Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD có tâm I. Gọi M là điểm đối xứng của D qua C. Gọi H, K lần lượt là hình chiếu vuông góc của C và D trên đường thẳng AM. Biết K(1;1), đỉnh B thuộc đường thẳng: y = 5x + 3y – 10 = 0 và đường thẳng HI có phương trình 3x + y + 1 = 0. Tìm tọa độ đỉnh B.
Đề thi học kỳ 2 Toán 10 năm 2017 - 2018 trường THPT Dương Đình Nghệ - Thanh Hóa
Đề thi học kỳ 2 Toán 10 năm 2017 – 2018 trường THPT Dương Đình Nghệ – Thanh Hóa gồm 4 mã đề, mỗi mã đề gồm 12 câu hỏi trắc nghiệm khách quan (3 điểm) và 5 bài toán tự luận (7 điểm), thời gian làm bài 90 phút, đề có đáp án và lời giải chi tiết . Trích dẫn đề thi học kỳ 2 Toán 10 năm 2017 – 2018 : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC, có A(3;0), B(-2;1), C(4;1). a) Viết phương trình tổng quát của đường cao AH của ΔABC. b) Tìm tọa độ điểm M thuộc cạnh BC sao cho SΔABC = 3/2.SΔMAB. [ads] + Trong mặt phẳng tọa độ Oxy, cho điểm I(1;3) và đường thẳng d: 3x + 4y = 0. Tìm bán kính R của đường tròn tâm I và tiếp xúc với đường thẳng d. + Trong mặt phẳng tọa độ Oxy, tìm phương trình chính tắc của Elip có độ dài trục lớn bẳng 10, độ dài trục bé bằng 8.