Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG Toán 9 cấp huyện năm 2022 - 2023 phòng GDĐT Đoan Hùng - Phú Thọ

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 THCS cấp huyện năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Đoan Hùng, tỉnh Phú Thọ; đề thi hình thức 40% trắc nghiệm + 60% tự luận, thời gian làm bài 150 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán 9 cấp huyện năm 2022 – 2023 phòng GD&ĐT Đoan Hùng – Phú Thọ : + Cho tam giác đều ABC nội tiếp đường tròn (O), gọi H là trung điểm của cạnh BC, M là điểm bất kỳ thuộc đoạn BH (M khác B). Lấy điểm N thuộc đoạn thẳng CA sao cho CN BM. Gọi I là trung điểm của MN. a) Chứng minh rằng bốn điểm OM H I cùng thuộc một đường tròn. b) Gọi P là giao điểm của OI và AB. Chứng minh rằng tam giác MNP đều. c) Xác định vị trí điểm M để tam giác IAB có chu vi nhỏ nhất. + Một chiếc đu quay có bán kính 75m, tâm của vòng quay ở độ cao 90m, thời gian thực hiện mỗi vòng quay của đu quay là 30 phút. Nếu một người vào cabin tại vị trí thấp nhất của vòng quay, thì sau 20 phút quay, người đó ở độ cao bao nhiêu mét? + Cho P x là một đa thức bậc n với hệ số nguyên, n ≥ 2. Biết P P 1 2 2023. Chứng minh rằng phương trình P x 0 không có nghiệm nguyên.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Tây Hòa Phú Yên
Nội dung Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Tây Hòa Phú Yên Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 huyện Tây Hòa năm 2022-2023 Đề thi học sinh giỏi Toán lớp 9 huyện Tây Hòa năm 2022-2023 Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 9 năm học 2022-2023 của phòng Giáo dục và Đào tạo huyện Tây Hòa, tỉnh Phú Yên. Kỳ thi sẽ diễn ra vào ngày 08 tháng 11 năm 2022. Dưới đây là một số câu hỏi trong đề thi: 1. Cho ba số tự nhiên a, b, c. Biết rằng 7a + 2b - 5c chia hết cho 11. Chứng minh rằng 3a - 7b + 12c cũng chia hết cho 11. 2. Cho hình vuông ABCD. M là một điểm tuỳ ý trên đường chéo BD. Kẻ ME vuông góc AB, MF vuông góc AD. a) Chứng minh: DE = CF và DE vuông góc CF. b) Chứng minh ba đường thẳng DE, BF và CM đồng quy. c) Xác định vị trí điểm M trên BD để diện tích tứ giác AEMF lớn nhất. 3. Gọi I là điểm nằm trong ABC, các đường thẳng AI, BI, CI lần lượt cắt BC, CA, AB tại M, N, P. Chứng minh rằng: AI/IM = AN/NC + AP/PB. Đây là những câu hỏi thú vị và thách thức đối với các em học sinh lớp 9. Chúc các em ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới!
Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Kỳ Anh Hà Tĩnh
Nội dung Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Kỳ Anh Hà Tĩnh Bản PDF - Nội dung bài viết Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022-2023 Đề học sinh giỏi huyện lớp 9 môn Toán năm 2022-2023 Xin chào đến quý thầy cô và các em học sinh lớp 9! Sau đây là đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 9 năm học 2022-2023 do Phòng Giáo dục và Đào tạo UBND huyện Kỳ Anh, tỉnh Hà Tĩnh tổ chức. Đề học sinh giỏi huyện Toán lớp 9 năm 2022-2023 phòng GD&ĐT Kỳ Anh-Hà Tĩnh bao gồm các câu hỏi sau: 1. Một cửa hàng nhập được một lô hàng để bán. Biết số sản phẩm bán được mỗi ngày đều bằng nhau. Sau bao nhiêu ngày thì bán hết lô hàng? 2. Trong tam giác ABC cân tại A, AB = 2cm và góc A = 36°. Tính BC. 3. Cho hình chữ nhật ABCD có diện tích bằng 48cm2; trên BC và CD lần lượt lấy các điểm E và F. Tính diện tích của tam giác AEF khi biết SABE = 8cm2 và SADF = 2cm2. Hy vọng rằng đề thi này sẽ giúp các em học sinh ôn tập và củng cố kiến thức môn Toán một cách hiệu quả. Chúc các em thành công!
Đề chọn đội tuyển thi HSG tỉnh lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Tân Kỳ Nghệ An
Nội dung Đề chọn đội tuyển thi HSG tỉnh lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Tân Kỳ Nghệ An Bản PDF - Nội dung bài viết Đề chọn đội tuyển thi HSG tỉnh lớp 9 Toán năm 2022 - 2023 Đề chọn đội tuyển thi HSG tỉnh lớp 9 Toán năm 2022 - 2023 Xin chào quý thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu đến quý vị đề thi chọn đội tuyển dự thi học sinh giỏi cấp tỉnh môn Toán lớp 9 năm học 2022 - 2023 của phòng Giáo dục và Đào tạo huyện Tân Kỳ, tỉnh Nghệ An. Kỳ thi sẽ diễn ra vào ngày 25 tháng 10 năm 2022. Dưới đây là một số câu hỏi trong đề thi: Cho x, y là các số nguyên thỏa mãn 2x^2 + x = 3y^2 + y. Chứng minh rằng x - y, 2x + 2y + 1 và 3x + 3y + 1 đều là các số chính phương. Cho hình vuông ABCD. Điểm M thuộc cạnh AC, kẻ MH vuông góc với AB (H thuộc AB), kẻ MK vuông góc với BC (K thuộc BC). O là trung điểm của AM. a) Chứng minh rằng HBO đồng dạng MCH. b) Chứng minh rằng BO/CH. c) Xác định vị trí của M trên AC để diện tích ADHK đạt giá trị nhỏ nhất. Cho x, y là các số thực dương thỏa mãn (x + 1)(y + 1) = 4xy. Chứng minh rằng? Hy vọng các em sẽ hoàn thành tốt các câu hỏi này và chuẩn bị tinh thần để đạt kết quả cao trong kỳ thi sắp tới. Chúc các em may mắn và thành công!
Đề HSG huyện lớp 9 môn Toán vòng 1 năm 2022 2023 phòng GD ĐT Quỳ Hợp Nghệ An
Nội dung Đề HSG huyện lớp 9 môn Toán vòng 1 năm 2022 2023 phòng GD ĐT Quỳ Hợp Nghệ An Bản PDF - Nội dung bài viết Đề HSG huyện Toán lớp 9 vòng 1 năm 2022 - 2023 phòng GD&ĐT Quỳ Hợp - Nghệ An Đề HSG huyện Toán lớp 9 vòng 1 năm 2022 - 2023 phòng GD&ĐT Quỳ Hợp - Nghệ An Cảm ơn quý thầy cô và các em học sinh lớp 9 đã quan tâm đến đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 9 vòng 1 năm học 2022 - 2023 của phòng Giáo dục và Đào tạo UBND huyện Quỳ Hợp, tỉnh Nghệ An. Dưới đây là một số câu hỏi trong đề thi: Chứng minh rằng nếu tổng của hai số nguyên chia hết cho 3 thì tổng các lập phương của chúng chia hết cho 9. Cho tam giác ABC nhọn. Các đường cao AD, BE và CF cắt nhau tại H. Chứng minh CA.CE = CB.CD Chứng minh sin BAC = AD.BC/AB.AC Gọi G là trọng tâm của tam giác ABC. Cho biết tanB.tanC = 3. Chứng minh rằng HG // BC Để chào mừng kỷ niệm 40 năm ngày nhà giáo Việt Nam 20/11/1982 - 20/11/2022, Phòng Giáo dục và Đào tạo Huyện Quỳ Hợp tổ chức giải bóng chuyền Nam có 7 đội tham gia. Chứng minh rằng tổng số trận thắng của các đội bằng tổng số trận thua. Hy vọng rằng đề thi sẽ giúp các em rèn luyện kỹ năng Toán và chuẩn bị tốt cho kỳ thi tuyển sinh sắp tới. Chúc các em thành công!