Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPT QG 2019 lần 2 trường Nguyễn Trung Thiên - Hà Tĩnh

giới thiệu đến thầy, cô và các em học sinh lớp 12 đề thi thử Toán THPT QG 2019 lần 2 trường Nguyễn Trung Thiên – Hà Tĩnh, đề thi do trường THPT Nguyễn Trung Thiên (Hà Tĩnh) phối hợp cùng trường THPT Nguyễn Đình Liễn (Hà Tĩnh) biên soạn, nhằm giúp các em học sinh khối 12 của trường tiếp tục được rèn luyện nâng cao kiến thức và kỹ năng giải Toán, để chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm học 2018 – 2019 do Bộ Giáo dục và Đào tạo tổ chức. Đề thi thử Toán THPT QG 2019 lần 2 trường Nguyễn Trung Thiên – Hà Tĩnh mã đề 001 có cấu trúc và độ khó tương đương đề thi tham khảo THPT Quốc gia môn Toán năm 2019, đề thi có đáp án mã đề 001, 002, 003, 004, 005, 006, 007, 008. Trích dẫn đề thi thử Toán THPT QG 2019 lần 2 trường Nguyễn Trung Thiên – Hà Tĩnh : + Người ta cần trồng một vườn hoa (phần tô đậm như hình vẽ). Biết đường viền ngoài và đường viền trong khu đất trồng hoa là hai đường elip. Đường elip ngoài có độ dài trục lớn và độ dài trục bé lần lượt là 10m và 6m. Đường elip trong cách đều elip ngoài một khoảng bằng 2dm (hình vẽ). Kinh phí cho mỗi m2 trồng hoa là 100.000 đồng. Tổng số tiền (đơn vị đồng) dùng để trồng vườn hoa gần với số nào sau đây? [ads] + Đoàn trường THPT Nguyễn Đình Liễn tổ chức giao lưu bóng chuyền học sinh giữa các lớp nhân dịp chào mừng ngày 26/03. Sau quá trình đăng kí có 10 đội tham gia thi đấu từ 10 lớp, trong đó có lớp 10A1 và 10A2, các đội chia làm hai bảng, ký hiệu là bảng A và bảng B, mỗi bảng 5 đội. Việc chia bảng được thực hiện bằng cách bốc thăm ngẫu nhiên. Tính xác suất để hai đội 10A1 và 10A2 thuộc hai bảng đấu khác nhau. + Một người gửi tiết kiệm vào ngân hàng 1 tỷ đồng với lãi suất 0.5%/ tháng (lãi tính theo từng tháng và cộng dồn vào gốc). Kể từ lúc gửi sau mỗi tháng vào ngày ngân hàng tính lãi người đó rút 10 triệu đồng để chi tiêu (nếu tháng cuối cùng không đủ 10 triệu đồng thì rút hết). Hỏi trong bao lâu kể từ ngày gửi người đó rút hết tiền trong tài khoản? (Giả sử lãi suất không thay đổi trong suốt quá trình người đó gửi).

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra cuối cấp Toán 12 THPT năm 2017 - 2018 sở GD và ĐT Sóc Trăng
Đề kiểm tra cuối cấp Toán 12 THPT năm 2017 – 2018 sở GD và ĐT Sóc Trăng mã đề 121 nằm trong chuyên mục đề thi thử Toán hướng đến kỳ thi THPT Quốc gia 2018, đề thi có 04 trang, gồm 50 câu hỏi trắc nghiệm khách quan, bắt đầu từ câu 1 đến câu 50, thí sinh làm bài trong khoảng thời gian 90 phút. Trích dẫn đề thi thử Toán 2018 sở Sóc Trăng : + Cho hình lăng trụ đứng ABC.A’B’C’ có G, G’ lần lượt là trọng tâm của hai đáy ABC và A’B’C’ (tham khảo hình vẽ). Thiết diện tạo bởi mặt phẳng (AGG’) với hình lăng trụ đã cho là: A. tam giác vuông. B. tam giác cân. C. hình vuông. D. hình chữ nhật. [ads] + Theo thống kê của tổng cục dân số Việt Nam vào đầu năm 2003 dân số nước ta là 80.902.400 người và tỉ lệ tăng dân số là 1,47%/ năm. Biết rằng tỉ lệ tăng dân số là không thay đổi. Nếu tính từ năm 2003 thì thời điểm gần nhất để dân số nước ta vượt mức 100 triệu là? + Bạn An chơi trò chơi xếp các que diêm thành hình tháp theo qui tắc thể hiện như hình vẽ. Để xếp được tháp có 10 tầng thì bạn An cần dùng đúng bao nhiêu que diêm?
Đề kiểm tra khảo sát Toán 12 năm 2017 - 2018 trường Chu Văn An - Hà Nội
Đề kiểm tra khảo sát Toán 12 năm 2017 – 2018 trường Chu Văn An – Hà Nội mã đề 121 nằm trong chuyên mục đề thi thử Toán THPTQG hướng đến kỳ thi THPT Quốc gia 2018, đề gồm 7 trang với 50 câu hỏi trắc nghiệm khách quan, thời gian làm bài 90 phút. Trường THPT Chu Văn An – Hà Nội (thường được biết đến với tên gọi “trường Bưởi) là một trong những ngôi trường giàu truyền thống, với chất lượng dạy và học nằm trong top đầu cả nước, do đó, đề thì thử Toán của trường này không thể thiếu trong hành trình chinh phục giấc mơ Đại học của các sĩ tử. Đề thi thử Toán có đáp án tất cả các mã đề và lời giải chi tiết . Trích dẫn đề kiểm tra khảo sát Toán 12 năm 2017 – 2018 : + Một người thợ thủ công làm mô hình đèn lồng hình bát diện đều, mỗi cạnh của bát diện đó được làm từ các que tre có độ dài 8cm. Hỏi người đó cần bao nhiêu mét que tre để làm 100 cái đèn (giả sử mối nối giữa các que tre có độ dài không đáng kể)? [ads] + Bạn An có một cốc giấy hình nón có đường kính đáy là 10 cm và độ dài đường sinh là 8 cm. Bạn dự định đựng một viên kẹo hình cầu sao cho toàn bộ viên kẹo nằm trong cốc (không phần nào của viên kẹo cao hơn miệng cốc). Hỏi bạn An có thể đựng được viên kẹo có đường kính lớn nhất bằng bao nhiêu? + Cho hai hàm số y = f(x) và y = g(x) liên tục trên đoạn [a; b] với a < b. Kí hiệu S1 là diện tích hình phẳng giới hạn bởi các đường y = 3.f(x), y = 3.g(x), x = a, x = b, S2 là diện tích hình phẳng giới hạn bởi các đường y = f(x) – 2, y = g(x) – 2, x = a, x = b. Khẳng định nào sau đây đúng?
Đề kiểm tra KSCL Toán 12 năm học 2017 - 2018 sở GD và ĐT Yên Bái
Đề kiểm tra KSCL Toán 12 năm học 2017 – 2018 sở GD và ĐT Yên Bái mã đề 001 thuộc chuyên mục đề thi thử môn Toán hướng đến kỳ thi THPT Quốc gia năm 2018, đề gồm 4 trang với 50 câu hỏi trắc nghiệm khách quan, thời gian làm bài 90 phút, kỳ thi được diễn ra vào ngày 12/04/2018, đề thi thử Toán có đáp án và lời giải chi tiết . Trích dẫn đề KSCL Toán 12 sở Yên Bái 2017 – 2018 : + Cho khối trụ có chiều cao 20. Cắt khối trụ bởi một mặt phẳng ta được thiết diện là hình elip có độ dài trục lớn bằng 10. Thiết diện chia khối trụ ban đầu thành hai nửa, nửa trên có thể tích V1 , nửa dưới có thể tích V2 . Khoảng cách từ một điểm thuộc thiết diện gần đáy dưới nhất và điểm thuộc thiết diện xa đáy dưới nhất tới đáy dưới lần lượt là 8 và 14. Tính tỉ số V1/V2. [ads] + Lúc 10 giờ sáng trên sa mạc, một nhà địa chất đang ở tại vị trí A, anh ta muốn đến vị trí B (bằng ô tô) trước 12 giờ trưa, với AB = 70km. Nhưng trong sa mạc thì xe chỉ có thể di chuyển với vận tốc là 30km/h. Cách vị trí A 10km có một con đường nhựa chạy song song với đường thẳng nối từ A đến B. Trên đường nhựa thì xe có thể di chuyển với vận tốc 50km/h. Tìm thời gian ít nhất để nhà địa chất đến vị trí B? + Ba cầu thủ sút phạt đền 11m, mỗi người sút một lần với xác suất ghi bàn tương ứng là x, y và 0,6 (với x > y). Biết xác suất để ít nhất một trong ba cầu thủ ghi bàn là 0,976 và xác suất để cả ba cầu thủ đều ghi bàn là 0,336. Tính xác suất để có đúng hai cầu thủ ghi bàn.