Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn đội tuyển học sinh giỏi Toán năm 2021 sở GD ĐT Lâm Đồng

Nội dung Đề thi chọn đội tuyển học sinh giỏi Toán năm 2021 sở GD ĐT Lâm Đồng Bản PDF Ngày 11 tháng 09 năm 2020, sở Giáo dục và Đào tạo tỉnh Lâm Đồng tổ chức kỳ thi chọn học sinh vào đội tuyển bồi dưỡng thi học sinh giỏi Quốc gia môn Toán năm học 2020 – 2021. Đề thi chọn đội tuyển học sinh giỏi Toán năm 2021 sở GD&ĐT Lâm Đồng gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề thi chọn đội tuyển học sinh giỏi Toán năm 2021 sở GD&ĐT Lâm Đồng : + Cho tam giác ABC nhọn, không cân, nội tiếp trong đường tròn (O). Gọi H là hình chiếu của A lên BC và D, E, M lần lượt là trung điểm HB, HC, BC. Đường tròn (ABE) tâm I cắt AC tại S và đường tròn (ACD) tâm J cắt AB tại R. a) Chứng minh rằng BC = 4IJ. b) Trung tuyến đỉnh H của tam giác AHM cắt RS tại T, chứng minh rằng các đường thẳng AT, BS, CR đồng quy. + Cho số a = 2019.2020.2021 và số nguyên dương n >= 3. Người ta xếp n số nguyên dương nào đó lên một đường tròn thỏa mãn đồng thời hai điều kiện sau: (i) Hai số nằm cạnh nhau có tích không chia hết cho a. (ii) Hai số không nằm cạnh nhau có tích chia hết cho a. a) Tìm một bộ các số nguyên dương thỏa mãn cách xếp trên. b) Tìm giá trị lớn nhất của n. + Cho tập S = {1; 2; …; n} với n là số nguyên dương. Gọi An là tập hợp các hoán vị (a1; a2; …; an) của tập S thỏa mãn điều kiện 2(a1 + a2 + … + ak) chia hết cho k với mọi k = 1; 2; …; n. a) Chứng minh rằng an – 1 chia hết cho n – 1 khi n chẵn và n > 3. b) Tìm số phần tử của A2020.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi Toán 12 năm 2023 - 2024 sở GDĐT Nam Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Nam Định; đề thi có đáp án và hướng dẫn chấm điểm mã đề 101 – 102 – 103 – 104. Trích dẫn Đề thi chọn học sinh giỏi Toán 12 năm 2023 – 2024 sở GD&ĐT Nam Định : + Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC), BAC = 90◦ và SA = BC. Gọi E, F lần lượt là hình chiếu vuông góc của A lên SB, SC; M là trung điểm của SA và G là trọng tâm của tam giác ABC. Tính tỉ số V1 V2 với V1, V2 lần lượt là thể tích của các khối tứ diện MAEF và AEF G. + Cho hình tứ diện ABCD có AB, AC, AD đôi một vuông góc với nhau và có độ dài cùng bằng 2a. Gọi E và F lần lượt là trung điểm BC, BD. Tính thể tích của khối chóp A.EF DC. + Cho đa giác đều (H) có 24 đỉnh, chọn ngẫu nhiên 4 đỉnh của hình (H). Tính xác suất để 4 đỉnh được chọn tạo thành một hình chữ nhật không phải là hình vuông.
Đề thi chọn học sinh giỏi Toán THPT năm 2023 - 2024 sở GDĐT Sơn La
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Sơn La; đề thi có đáp án trắc nghiệm và hướng dẫn chấm điểm tự luận mã đề 201 202 203 204 205 206 207 208. Trích dẫn Đề thi chọn học sinh giỏi Toán THPT năm 2023 – 2024 sở GD&ĐT Sơn La : + Một hộp đựng 5 quả cầu trắng, 7 quả cầu đen. Lần thứ nhất lấy ngẫu nhiên 1 quả cầu trong hộp, lần thứ hai lấy ngẫu nhiên 1 quả cầu trong các quả cầu còn lại. Xác suất để kết quả của hai lần lấy được 2 quả cầu cùng màu bằng? + Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 3 cm. Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối nón có đường tròn đáy nội tiếp tam giác SAB và đỉnh nằm trên cạnh SC bằng? + Trong mặt phẳng tọa độ Oxy cho hình chữ nhật ABCD có AB BC 2. Gọi M N lần lượt là trung điểm của AB CD. Đường thẳng BN cắt đường thẳng AC tại điểm E (5;3). Phương trình đường thẳng CM là x y 9. Tìm tọa độ điểm C.
Đề thi thử HSG lần 3 Toán 12 năm 2023 - 2024 trường THPT Trần Văn Lan - Nam Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử học sinh giỏi lần 3 môn Toán 12 năm học 2023 – 2024 trường THPT Trần Văn Lan, tỉnh Nam Định; đề thi gồm 40 câu trắc nghiệm một lựa chọn và 20 câu ghi đáp án, thời gian làm bài 120 phút, có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi thử HSG lần 3 Toán 12 năm 2023 – 2024 trường THPT Trần Văn Lan – Nam Định : + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật và AB = 2a, BC = a. Các cạnh bên của hình chóp bằng nhau và bằng a 2. Gọi E và F lần lượt là trung điểm của AB và CD; K là điểm bất kỳ trên AD. Tính khoảng cách giữa hai đường thẳng EF và SK. + Cho hình trụ T có hai hình tròn đáy là O và O. Xét hình nón N có đỉnh O đáy là hình tròn O và đường sinh hợp với đáy một góc. Biết tỉ số giữa diện tích xung quanh hình trụ T và diện tích xung quanh hình nón N bằng 3. Tính số đo góc. + Ông Tuấn gửi 9,8 triệu đồng tiết kiệm với lãi suất 8,4%/năm và lãi suất hàng năm được nhập vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm ông Tuấn thu được tổng số tiền 20 triệu đồng (biết rằng lãi suất không thay đổi).