Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 10 năm 2022 - 2023 trường THPT Thị xã Quảng Trị

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi văn hóa môn Toán 10 THPT năm học 2022 – 2023 trường THPT Thị xã Quảng Trị; kỳ thi được diễn ra vào ngày 11 tháng 04 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 10 năm 2022 – 2023 trường THPT Thị xã Quảng Trị : + Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 12gam hương liệu, 9 lít nước và 315gam đường để pha chế hai loại nước A và B. Để pha chế 1 lít nước A cần 45gam đường, 1 lít nước và 0,5gam hương liệu; để pha chế 1 lít nước B cần 15gam đường, 1 lít nước và 2gam hương liệu. Mỗi lít nước A nhận 60 điểm thưởng, mỗi lít nước B nhận 80 điểm thưởng. Hỏi cần pha chế bao nhiêu lít nước mỗi loại để đội chơi được số điểm thưởng là lớn nhất? + Trong mặt phẳng Oxy, cho tam giác ABC cân tại A(-1;3). Gọi D là điểm trên cạnh AB sao cho AB AD 3 và H là hình chiếu vuông góc của B trên CD. Điểm 1 3 2 2 M là trung điểm HC. Xác định tọa độ đỉnh C, biết đỉnh B nằm trên đường thẳng có phương trình x y 7 0. + Một sa mạc có dạng hình chữ nhật ABCD có DC km 25 CB km 20 và P Q lần lượt là trung điểm của AD BC. Một người cưỡi ngựa xuất phát từ A đi đến C bằng cách đi thẳng từ A đến một điểm X thuộc đoạn PQ rồi lại đi thẳng từ X đến C. Vận tốc của ngựa khi đi trên phần ABQP là 15 km h vận tốc của ngựa khi đi trên phần PQCD là 30 km h. Tìm vị trí của X để thời gian ngựa di chuyển từ A đến C là ít nhất?

Nguồn: toanmath.com

Đọc Sách

Đề Olimpic Toán 10 năm 2023 - 2024 cụm Thạch Thất Quốc Oai - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi Olimpic cấp cụm môn Toán 10 năm học 2023 – 2024 cụm Thạch Thất & Quốc Oai, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề Olimpic Toán 10 năm 2023 – 2024 cụm Thạch Thất & Quốc Oai – Hà Nội : + Cho tam giác ABC có các cạnh AB c BC a b CA thỏa mãn hệ thức 1 cos 2 1 cos 2. Chứng minh rằng tam giác ABC cân. + Cho tam giác ABC có 60o AB a AC a BAC trọng tâm G. Tính diện tích tam giác ABG. + Trong mặt phẳng tọa độ Oxy, cho hình vuông ABCD. Biết trung điểm của cạnh BC là điểm N(1;2), đường trung tuyến kẻ từ đỉnh A của tam giác ADN có phương trình 5 1 0 x y. Xác định tọa độ các đỉnh của hình vuông ABCD biết đỉnh A có hoành độ dương.
Đề học sinh giỏi tỉnh Toán 10 chuyên đợt 2 năm 2023 - 2024 sở GDĐT Quảng Nam
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp tỉnh THPT môn Toán 10 chuyên đợt 2 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 15 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi tỉnh Toán 10 chuyên đợt 2 năm 2023 – 2024 sở GD&ĐT Quảng Nam : + Cho x y là hai số nguyên dương phân biệt bất kỳ, chứng minh rằng tích số (16 16 xy x y) không phải là lũy thừa nguyên dương của 2. + Cho hai đường tròn (O R) và (O R) với R R cắt nhau tại A và B sao cho OAO 90. Đường thẳng OO′ cắt đường tròn (O R) tại C D và cắt đường tròn (O R) tại E F sao cho các điểm COEDO F nằm trên đường thẳng theo thứ tự đó. Tia BE cắt đường tròn (O R) tại K (khác B) và cắt đoạn thẳng AC tại M. Tia BD cắt đường tròn (O R) tại L (khác B) và cắt đoạn thẳng AF tại N. a) Chứng minh ba điểm AC L thẳng hàng. b) Tính KE LN KM LD theo R R. + Có tất cả bao nhiêu cách lấy cùng lúc ba thẻ từ hộp đựng 20 thẻ được ghi số từ 1 đến 20 sao cho các số ghi trên ba thẻ đó là độ dài ba cạnh của một tam giác?
Đề học sinh giỏi Toán 10 cấp tỉnh năm 2023 - 2024 sở GDĐT Hà Nam
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi môn Toán 10 THPT cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Hà Nam; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 10 cấp tỉnh năm 2023 – 2024 sở GD&ĐT Hà Nam : + Cổng vòm hoa tại một lễ cưới có hình dạng là đường parabol. Biết khoảng cách giữa hai chân cổng vòm hoa là 3,2m. Tại vị trí trên cổng vòm hoa có độ cao 2m so với mặt đất người ta thả một sợi dây chạm đất cách chân A của cổng vòm hoa một đoạn 1m (hình 1). Tính chiều cao của cổng vòm hoa (làm tròn đến hàng phần trăm). + Một đường dây điện được nối từ nhà máy điện trên đất liền ở vị trí A đến một hòn đảo ở vị trí D. Khoảng cách ngắn nhất từ D vào đất liền là DC km 2. Khoảng cách từ A đến C là 5km. Người ta chọn một vị trí (điểm B) nằm giữa A và C để mắc đường dây điện từ A đến B, rồi từ B đến D (hình 2). Chi phí mắc mỗi km dây điện trên đất liền là 3000USD, chi phí mắc mỗi km dây điện ngầm dưới biển là 5000USD. Hỏi điểm B phải cách điểm A bao nhiêu km, biết tổng chi phí mắc dây điện nối từ vị trí A đến vị trí D theo cách trên là 23000USD. + Một xưởng sản xuất bàn và ghế. Một chiếc bàn cần 1,5 giờ lắp ráp và 1 giờ hoàn thiện. Một chiếc ghế cần 1 giờ lắp ráp và 2 giờ hoàn thiện. Bộ phận lắp ráp có 3 công nhân, bộ phận hoàn thiện có 4 công nhân. Mỗi công nhân không làm việc quá 8 giờ một ngày và năng suất lao động của công nhân ở mỗi bộ phận đều như nhau. Thị trường luôn tiêu thụ hết sản phẩm của xưởng và lượng ghế tiêu thụ không vượt quá 3,5 lần số bàn. Một chiếc bàn lãi 600 nghìn đồng, một chiếc ghế lãi 450 nghìn đồng. Hỏi trong một ngày, xưởng sản xuất cần sản xuất bao nhiêu chiếc bàn, bao nhiêu chiếc ghế để thu được tiền lãi cao nhất?
Đề học sinh giỏi Toán 10 năm 2023 - 2024 trường THPT Nguyễn Gia Thiều - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi môn Toán 10 năm học 2023 – 2024 trường THPT Nguyễn Gia Thiều, thành phố Hà Nội; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề học sinh giỏi Toán 10 năm 2023 – 2024 trường THPT Nguyễn Gia Thiều – Hà Nội : + Một hộ nông dân dự định trồng đậu và trồng cà trên diện tích 2 800m. Biết rằng cứ 2 100m trồng đậu cần 10 công và lãi là 7 triệu đồng, cứ 2 100m trồng cà cần 15 công và lãi là 9 triệu đồng. Hỏi cần trồng mỗi loại cây trên diện tích bao nhiêu để lãi lớn nhất, biết tổng số công không vượt quá 90 công. + Một bác nông dân có 60m lưới muốn rào một mảng vườn hình chữ nhật để trồng rau, biết rằng một cạnh là tường, bác chỉ cần rào 3 cạnh còn lại của hình chữ nhật để làm vườn. Em hãy tính hộ diện tích lớn nhất mà bác nông dân có thể rào được? + Cho tam giác ABC. M là điểm thuộc cạnh BC sao cho MC = 2MB, N là điểm thuộc cạnh AC sao cho NA = 2NC. Gọi K là giao điểm của MA và BN. Chứng minh rằng: AK = 6.KM.