Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học kì 2 (HK2) lớp 9 môn Toán năm 2022 2023 trường THPT chuyên Hà Nội Amsterdam

Nội dung Đề học kì 2 (HK2) lớp 9 môn Toán năm 2022 2023 trường THPT chuyên Hà Nội Amsterdam Bản PDF - Nội dung bài viết Đề học kì 2 (HK2) lớp 9 môn Toán năm 2022 2023 trường THPT chuyên Hà Nội Amsterdam Đề học kì 2 (HK2) lớp 9 môn Toán năm 2022 2023 trường THPT chuyên Hà Nội Amsterdam Xin chào quý thầy cô và các em học sinh lớp 9! Đây là đề kiểm tra học kỳ 2 môn Toán lớp 9 năm học 2022 - 2023 của trường THPT chuyên Hà Nội - Amsterdam, thành phố Hà Nội. 1. Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai người thợ cùng làm chung thì theo dự định 6 ngày sẽ xong một sản phẩm. Khi bắt đầu họ làm chung được 8 ngày thì người thứ nhất bị bệnh phải nghỉ, người thứ hai làm một mình trong 10 ngày nữa thì họ làm được 2 sản phẩm như thế. Hỏi nếu làm một mình cả công việc thì mỗi người mất bao nhiêu ngày để làm được hai sản phẩm như vậy? 2. Một bồn nước inox có dạng một hình trụ với chiều cao 1,5m và bán kính đáy là 0,6m. Hỏi bồn nước này đựng đầy được bao nhiêu mét khối nước? (Bỏ qua bề dày của thành bồn nước, lấy pi = 3,14 và kết quả phép tính lấy chính xác đến một chữ số sau dấu phẩy). 3. Cho parabol (P): y = x² và đường thẳng (d): y = 2mx + 1 + 2m với m là tham số. a) Tìm các giá trị của m để (d) cắt (P) tại hai điểm phân biệt A và B. b) Khi (d) cắt (P) tại hai điểm phân biệt A và B với hoành độ tương ứng là xA và xB, tìm tất cả các giá trị của tham số m sao cho xA² + 2mxB = 3. Chúc quý thầy cô và các em học sinh lớp 9 làm bài thật tốt! Hy vọng đề thi sẽ giúp các em ôn tập và củng cố kiến thức Toán một cách hiệu quả.

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra cuối kỳ 2 Toán 9 năm 2022 - 2023 sở GDĐT Cần Thơ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng cuối học kỳ 2 môn Toán 9 năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Cần Thơ; đề thi cấu trúc 40% trắc nghiệm + 60% tự luận, thời gian làm bài 90 phút, không kể thời gian phát đề. Trích dẫn Đề kiểm tra cuối kỳ 2 Toán 9 năm 2022 – 2023 sở GD&ĐT Cần Thơ : + Hai lớp 9A và 9B của trường THCS A có tổng cộng 84 học sinh. Cuối học kì I, lớp 9A có 25% học sinh đạt học sinh giỏi, lớp 9B có 35% học sinh đạt học sinh giỏi. Biết tổng số học sinh giỏi của hai lớp 9A và 9B ở cuối học kì I là 25 học sinh. Hỏi mỗi lớp có bao nhiêu học sinh? + Cho phương trình 2 x m x m 0 (*) (m là tham số). Tìm các giá trị của tham số m để phương trình (*) có hai nghiệm phân biệt 1 2 x x thỏa mãn 1 2 1 2 x 1. + Cho đường tròn O từ điểm M ở bên ngoài đường tròn vẽ hai tiếp tuyến MA và MB với đường tròn O (A, B là các tiếp điểm). Tia OM cắt AB tại H. a) Chứng minh tứ giác MAOB nội tiếp và OM vuông góc AB. b) Chứng minh MAAH MH OA. c) Gọi N là điểm thuộc đoạn thẳng HB (N khác H và B). Qua N vẽ đường thẳng vuông góc với ON cắt các tia MA, MB theo thứ tự tại E và F. Chứng minh OE OF.
Đề cuối học kì 2 Toán 9 năm 2022 - 2023 phòng GDĐT Cẩm Giàng - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kì 2 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Cẩm Giàng, tỉnh Hải Dương; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề cuối học kì 2 Toán 9 năm 2022 – 2023 phòng GD&ĐT Cẩm Giàng – Hải Dương : + Cho phương trình: 2 x mx 4 0 (1) (x là ẩn và m là tham số) a) Tìm m để phương trình có nghiệm x = -1. Tìm nghiệm còn lại. b) Gọi x1, x2 là nghiệm của phương trình (1). Tìm m để x12 + x22 = 6m + 3. Cho phương trình: 2 x x40 có hai nghiệm x1, x2. Lập phương trình bậc hai có hai nghiệm là 1 2 1 1 x x. + Hai ô tô khởi hành cùng một lúc đi từ A đến B. Ô tô thứ nhất mỗi giờ chạy nhanh hơn ô tô thứ hai là 10 km nên đến B trước ô tô thứ hai là 1 giờ. Tính vận tốc của mỗi ô tô, biết rằng quãng đường AB dài 300km. + Cho tam giác ABC có ba góc nhọn và AB < AC. Đường tròn tâm O đường kính BC cắt các cạnh AB, AC lần lượt tại E và D. Gọi H là giao điểm của BD và CE; F là giao điểm của AH và BC. 1) Chứng minh: tứ giác ADHE là tứ giác nội tiếp. 2) Gọi M là trung điểm của AH. Chứng minh MD là tiếp tuyến tại D của đường tròn tâm O. 3) Gọi K là giao điểm của AF và DE. Chứng minh: MD MK MF 2 và BK vuông góc với MC.
Đề kiểm tra cuối kỳ 2 Toán 9 năm 2022 - 2023 sở GDĐT Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng cuối học kỳ 2 môn Toán 9 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Nam; đề thi được biên soạn theo cấu trúc 50% trắc nghiệm + 50% tự luận, thời gian làm bài 60 phút; đề thi có đáp án và hướng dẫn chấm điểm mã đề A và mã đề B. Trích dẫn Đề kiểm tra cuối kỳ 2 Toán 9 năm 2022 – 2023 sở GD&ĐT Quảng Nam : + Cho đường tròn (O) và điểm M nằm bên ngoài đường tròn đó. Qua M kẻ tiếp tuyến MA và cát tuyến MBC với đường tròn (O) (A là tiếp điểm, B nằm giữa M và C, điểm O nằm trong góc AMC). Kẻ OI vuông góc BC (I thuộc BC). a) Chứng minh MAOI là tứ giác nội tiếp. b) Chứng minh AB MA AC MC. c) Đường thẳng qua A và vuông góc với đường thẳng MO cắt đường thẳng OI tại K. Chứng minh KB là tiếp tuyến của đường tròn (O). + Cho biết phương trình 2×2 + 5x – 6 = 0 có hai nghiệm x1, x2. Không giải phương trình, tính giá trị biểu thức P = x1x2 – 2×1 – 2×2. b) Tìm các hệ số a và b của hàm số y = ax + b biết đồ thị (d) của nó và parabol (P) : y = x2 có đúng một điểm chung và hoành độ của điểm chung đó bằng –1. + Chọn chữ cái trước ý trả lời đúng nhất trong các câu (câu 1 đến câu 15) và ghi vào giấy làm bài. Hệ phương trình nào dưới đây là hệ phương trình bậc nhất hai ẩn số?
Đề cuối học kỳ 2 Toán 9 năm 2022 - 2023 trường THCS Tân Dân - Hải Phòng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 2 môn Toán 9 năm học 2022 – 2023 trường THCS Tân Dân, huyện An Lão, thành phố Hải Phòng; đề thi có ma trận, đáp án và hướng dẫn chấm điểm. Trích dẫn Đề cuối học kỳ 2 Toán 9 năm 2022 – 2023 trường THCS Tân Dân – Hải Phòng : + Quãng đường AB dài 120km. Một người đi xe đạp từ A đến B, cùng thời điểm đó một người đi xe máy từ B về A và gặp nhau tại một địa điểm cách B 80km. Tìm vận tốc của mỗi xe biết vận tốc xe đạp nhỏ hơn vận tốc xe máy là 20km/h. + Cho tam giác ABC nhọn nội tiếp (O;R), đường cao BD, CE cắt nhau tại H. AH cắt BC tại K, cắt đường tròn tại điểm thứ hai là M. d) Chứng minh tứ giác ADHE nội tiếp, xác định tâm I của đường tròn ngoại tiếp tứ giác đó. e) Chứng minh KH = KM f) Cho (O;R) và BC cố định, điểm A di chuyển trên cung lớn BC sao cho tam giác ABC nhọn. Chứng minh đường tròn ngoại tiếp tam giác ADE có bán kính không đổi. + Cho (P): y = x2 và (d): y = 2x + 3. Khẳng định nào sau đây là đúng. A. (P) và (d) chỉ có một điểm chung. B. (P) và (d) không giao nhau. C. (d) tiếp xúc với (P). D. (P) và (d) cắt nhau tại hai điểm phân biệt.