Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề đường tròn ôn thi vào lớp 10

Tài liệu gồm 26 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề đường tròn, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. SỰ XÁC ĐỊNH CỦA ĐƯỜNG TRÒN Định nghĩa: Đường tròn tâm O bán kính R 0 là hình gồm các điểm cách điểm O một khoảng R kí hiệu là (O;R) hay (O). + Đường tròn đi qua các điểm A A … A 1 2 n gọi là đường tròn ngoại tiếp đa giác A A … A 1 2 n. + Đường tròn tiếp xúc với tất cả các cạnh của đa giác A A … A 1 2 n gọi là đường tròn nội tiếp đa giác đó. Những tính chất đặc biệt cần nhớ: + Trong tam giác vuông trung điểm cạnh huyền là tâm vòng tròn ngoại tiếp. + Trong tam giác đều tâm vòng tròn ngoại tiếp là trọng tâm tam giác đó. + Trong tam giác thường: Tâm vòng tròn ngoại tiếp là giao điểm của 3 đường trung trực của 3 cạnh tam giác đó. Tâm vòng tròn nội tiếp là giao điểm 3 đường phân giác trong của tam giác đó. PHƯƠNG PHÁP: Để chứng minh các điểm A A … A 1 2 n cùng thuộc một đường tròn ta chứng minh các điểm A A … A 1 2 n cách đều điểm O cho trước. VỊ TRÍ TƯƠNG ĐỐI CỦA ĐƯỜNG THẲNG VÀ ĐƯỜNG TRÒN 1. Khi một đường thẳng có hai điểm chung A B với đường tròn (O) ta nói đường thẳng cắt đường tròn tại hai điểm phân biệt. Khi đó ta có những kết quả quan trọng sau: Nếu M nằm ngoài đoạn AB thì MA MB MO R 2 2; Nếu M nằm trong đoạn AB thì MA MB R MO 2 2. Mối liên hệ khoảng cách và dây cung: 2 2 2 AB R OH 4. 2. Khi một đường thẳng chỉ có một điểm chung H với đường tròn (O) ta nói đường thẳng tiếp xúc với đường tròn, hay là tiếp tuyến của đường tròn (O). Điểm H gọi là tiếp điểm của tiếp tuyến với đường tròn (O). Như vậy nếu là tiếp tuyến của (O) thì vuông góc với bán kính đi qua tiếp điểm. Nếu hai tiếp tuyến của đường tròn cắt nhau tại một điểm thì: + Điểm đó cách đều hai tiếp điểm. + Tia kẻ từ điểm đó đến tâm O là tia phân giác góc tạo bởi 2 tiếp tuyến. + Tia kẻ từ tâm đi qua điểm đó là tia phân giác góc tạo bởi hai bán kính đi qua các tiếp điểm. + Tia kẻ từ tâm đi qua điểm đó thì vuông góc với đoạn thẳng nối hai tiếp điểm tại trung điểm của đoạn thẳng đó. 3. Khi một đường thẳng và đường tròn (O) không có điểm chung ta nói đường thẳng và đường tròn (O) không giao nhau. Khi đó OH R. 4. Đường tròn tiếp xúc với 3 cạnh tam giác là đường tròn nội tiếp tam giác. Đường tròn nội tiếp có tâm là giao điểm 3 đường phân giác trong của tam giác. 5. Đường tròn tiếp xúc với một cạnh của tam giác và phần kéo dài hai cạnh kia gọi là đường tròn bàng tiếp tam giác. Tâm đường tròn bàng tiếp tam giác trong góc A là giao điểm của hai đường phân giác ngoài góc B và góc C. Mỗi tam giác có 3 đường tròn bàng tiếp. VỊ TRÍ TƯƠNG ĐỐI CỦA HAI ĐƯỜNG TRÒN Xét hai đường tròn (O;R) và (O’;R’): A. Hai đường tròn tiếp xúc nhau: Khi hai đường tròn tiếp xúc nhau thì có thể xảy ra 2 khả năng: Hai đường tròn tiếp xúc ngoài; Hai đường tròn tiếp xúc trong. B. Hai đường tròn cắt nhau: Khi hai đường tròn 1 2 O O cắt nhau theo dây AB thì O O AB 1 2 tại trung điểm H của AB. Hay AB là đường trung trực của O O1 2. Khi giải toán liên quan dây cung của đường tròn, hoặc cát tuyến ta cần chú ý kẻ thêm đường phụ là đường vuông góc từ tâm đến các dây cung.

Nguồn: toanmath.com

Đọc Sách

Tài liệu luyện thi vào môn Toán phần Đại số Vũ Xuân Hưng
Nội dung Tài liệu luyện thi vào môn Toán phần Đại số Vũ Xuân Hưng Bản PDF - Nội dung bài viết Tài liệu luyện thi vào môn Toán phần Đại số Vũ Xuân HưngCHUYÊN ĐỀ 1 – BIỂU THỨC CHỨA CĂN BẬC HAICHUYÊN ĐỀ 2 – HÀM SỐ BẬC NHẤT Tài liệu luyện thi vào môn Toán phần Đại số Vũ Xuân Hưng Tài liệu luyện thi vào môn Toán phần Đại số Vũ Xuân Hưng là tài liệu tổng hợp kiến thức cần nhớ, các dạng bài tập và hướng dẫn giải từ cơ bản đến nâng cao của chủ đề Đại số bậc THCS. Tài liệu gồm 141 trang, được biên soạn bởi thầy giáo Vũ Xuân Hưng, giúp học sinh ôn tập chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. CHUYÊN ĐỀ 1 – BIỂU THỨC CHỨA CĂN BẬC HAI I – KIẾN THỨC CẦN NHỚ: Định nghĩa căn bậc hai. Các công thức vận dụng. Định nghĩa căn bậc ba. Tính chất của căn bậc ba. II – CÁC DẠNG BÀI TẬP CƠ BẢN: Dạng 1: Tìm điều kiện để biểu thức có nghĩa. Dạng 2: Căn bậc hai số học. Dạng 3: Tính giá trị của biểu thức. Dạng 4: Phân tích đa thức thành nhân tử. ... (còn nhiều dạng bài tập khác) III – BÀI TẬP TỰ LUYỆN. CHUYÊN ĐỀ 2 – HÀM SỐ BẬC NHẤT I – KIẾN THỨC CẦN NHỚ: Hàm số bậc nhất. Khái niệm hàm số bậc nhất. Tính chất. ... II – CÁC DẠNG BÀI TẬP CƠ BẢN: Dạng 1: Xác định hàm số đã cho là hàm đồng biến – nghịch biến. Dạng 2: Vẽ đồ thị của hàm số bậc nhất. ... (còn nhiều dạng bài tập khác) III – BÀI TẬP TỰ LUYỆN. Đồng hành cùng học sinh trong việc ôn tập và chuẩn bị cho kỳ thi tuyển sinh, tài liệu luyện thi của thầy giáo Vũ Xuân Hưng sẽ giúp họ nắm vững kiến thức và rèn luyện kỹ năng giải bài tập một cách hiệu quả.
Các bài toán chứng minh cực trị hình học
Nội dung Các bài toán chứng minh cực trị hình học Bản PDF - Nội dung bài viết Cùng khám phá bài toán chứng minh cực trị hình học! Cùng khám phá bài toán chứng minh cực trị hình học! Tài liệu chứa 50 trang với hướng dẫn chi tiết về cách giải các bài toán chứng minh cực trị hình học, loại dạng toán thường gặp trong các bài tập. Đây sẽ là nguồn thông tin hữu ích giúp bạn nắm vững phương pháp giải và áp dụng chúng một cách hiệu quả.
Bài toán chứng minh các đường thẳng đồng quy
Nội dung Bài toán chứng minh các đường thẳng đồng quy Bản PDF - Nội dung bài viết Bài toán chứng minh các đường thẳng đồng quy trong toán học Bài toán chứng minh các đường thẳng đồng quy trong toán học Trong tài liệu này bao gồm 16 trang với hướng dẫn cụ thể về phương pháp giải bài toán chứng minh các đường thẳng đồng quy. Đây là dạng bài toán thường gặp trong các bài toán hình học. Bài toán này thường đưa ra các điều kiện của các đường thẳng và yêu cầu chúng ta chứng minh rằng các đường thẳng đó đồng quy. Qua việc áp dụng các quy tắc và định lý liên quan, chúng ta có thể dễ dàng chứng minh được tính đồng quy của các đường thẳng đó. Với tài liệu này, bạn sẽ học được cách tiếp cận bài toán chứng minh các đường thẳng đồng quy một cách logic và cụ thể, từ đó giúp bạn nắm vững kiến thức và kỹ năng cần thiết trong việc giải các dạng bài toán này.
Các bài toán chứng minh ba điểm thẳng hàng
Nội dung Các bài toán chứng minh ba điểm thẳng hàng Bản PDF - Nội dung bài viết Cách giải bài toán chứng minh ba điểm thẳng hàng Cách giải bài toán chứng minh ba điểm thẳng hàng Tài liệu này bao gồm 21 trang và hướng dẫn cách giải bài toán chứng minh ba điểm thẳng hàng. Đây là một dạng toán mà các bạn thường gặp trong quá trình học tập. Để giải bài toán này, đầu tiên ta cần phải biết rằng ba điểm thẳng hàng chỉ xảy ra khi ba điểm đó cùng nằm trên một đường thẳng. Để chứng minh điều này, chúng ta cần sử dụng các phương pháp và công thức hình học cơ bản như định lý hình chiếu, định lý góc bù, hay định lý hình vuông. Quá trình chứng minh ba điểm thẳng hàng có thể phức tạp đôi khi, nhưng với kiến thức và kỹ năng phù hợp, chắc chắn bạn có thể giải quyết thành công. Hãy làm quen với các phương pháp chứng minh và luyện tập thường xuyên để nâng cao khả năng giải quyết bài toán hình học của bạn.