Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử lớp 9 môn Toán năm 2018 trường THPT chuyên KHTN Hà Nội (Vòng 1 Đợt 1)

Nội dung Đề thi thử lớp 9 môn Toán năm 2018 trường THPT chuyên KHTN Hà Nội (Vòng 1 Đợt 1) Bản PDF - Nội dung bài viết Đề thi thử lớp 9 môn Toán năm 2018 trường THPT chuyên KHTN Hà Nội (Vòng 1 Đợt 1) Đề thi thử lớp 9 môn Toán năm 2018 trường THPT chuyên KHTN Hà Nội (Vòng 1 Đợt 1) Đề thi thử Toán lớp 9 năm 2018 trường THPT chuyên KHTN – Hà Nội (Vòng 1 – Đợt 1) là bài thi gồm 1 trang với 4 bài toán tự luận, thời gian làm bài 120 phút. Đề thi được thiết kế nhằm đánh giá năng lực học tập môn Toán của học sinh lớp 9, cũng như giúp các em chuẩn bị tốt cho kỳ thi vào lớp 10 môn Toán. Đề thi có lời giải chi tiết để học sinh có thể tự kiểm tra và rút kinh nghiệm sau khi làm bài. Ví dụ về một câu hỏi trong đề thi: "Giả sử số nguyên dương n có tính chất: có tồn tại một cách sắp xếp a1, a2, … , a2n của 2n số 1, 1, 2, 2, …, n, n sao cho với mỗi k = 1, 2, … , n luôn tồn tại đúng k số xếp giữa hai số k. Chứng minh rằng n^2 + n chia hết cho 4." Đề thi thử lớp 9 môn Toán năm 2018 trường THPT chuyên KHTN Hà Nội mang đến cơ hội để học sinh thử sức và nâng cao kỹ năng giải bài toán. Các câu hỏi được thiết kế logic, đa dạng và có độ khó tăng dần, giúp học sinh phát triển tư duy logic và kỹ năng giải quyết vấn đề. Đề thi đồng thời cũng là cơ hội tốt để học sinh ôn tập kiến thức và rèn luyện kỹ năng làm bài chuẩn xác.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát chất lượng Toán 9 năm 2023 - 2024 phòng GDĐT Đống Đa - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo quận Đống Đa, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 17 tháng 04 năm 2024. Trích dẫn Đề khảo sát chất lượng Toán 9 năm 2023 – 2024 phòng GD&ĐT Đống Đa – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một ô tô đi từ A đến B dài 90km. Khi về ô tô đi theo đường khác dài hơn 10km và mỗi giờ ô tô đi được nhiều hơn lúc đi 10km nên thời gian về ít hơn thời gian đi là 15 phút. Tính vận tốc lúc đi và lúc về? + Một lon nước ngọt hình trụ có đường kính đáy là 6cm, độ dài trục là 11cm. Tính thể tích lon nước ngọt (cho pi = 3,14). + Cho đường tròn tâm O, đường kính AB và d là một tiếp tuyến của đường tròn (O) tại điểm A. Trên đường thẳng d lấy điểm M (khác A) và trên đoạn OB lấy điểm N (khác O và B). Đường thẳng MN cắt đường tròn (O) tại hai điểm C và D (C nằm giữa M và D). Gọi H là trung điểm của đoạn thẳng CD. 1) Chứng minh 4 điểm A, O, H, M cùng nằm trên một đường tròn. 2) Chứng minh MA2 = MC.MD. 3) Đường thẳng qua D song song với MO cắt AB và BC lần lượt tại K và F. Chứng minh tứ giác AHKD nội tiếp và K là trung điểm của đoạn thẳng DF.
Đề khảo sát Toán 9 năm 2023 - 2024 phòng GDĐT Đông Anh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Đông Anh, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Sáu ngày 12 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 năm 2023 – 2024 phòng GD&ĐT Đông Anh – Hà Nội : + Giải bài toán sau bằng cách lập phương trình: Một người đi xe đạp từ A đến B cách nhau 24 km. Khi từ B về A người đó tăng vận tốc thêm 4 km/h so với lúc đi. Vì vậy thời gian về ít hơn thời gian đi là 30 phút. Tính vận tốc của người đi xe đạp đó, khi đi từ A đến B. + Một hộp sữa Ông Thọ hình trụ có chiều cao là 8cm và bán kính đáy là 3,5 cm. Nhà sản xuất đã dán giấy xung quanh hộp sữa để ghi các thông tin về sản phẩm. Hãy tính diện tích giấy cần dùng cho 1 hộp sữa. (Coi mép giấy dán, các mép của hộp sữa và độ dày của giấy in không đáng kể). + Cho đường tròn (O), đường kính AB. Dây CD vuông góc với đường kính AB tại H (H khác O, A và B). E là một điểm thuộc cung nhỏ BD (E khác B và D); AE cắt CD tại F. 1) Chứng minh: Tứ giác BEFH nội tiếp đường tròn. 2) Chứng minh: H là trung điểm của CD và CD2 = 4.AH.HB. 3) Đường thẳng đi qua H song song với CE cắt đường thẳng AE và BE lần lượt tại I và K. Lấy G là trung điểm của đoan thẳng IK. Hỏi tam giác DGK có là tam giác cân được hay không?
Đề khảo sát Toán 9 lần 1 năm 2023 - 2024 phòng GDĐT Hà Đông - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 lần 1 năm học 2023 – 2024 phòng Giáo dục và Đào tạo quận Hà Đông, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 12 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán 9 lần 1 năm 2023 – 2024 phòng GD&ĐT Hà Đông – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai bạn Linh và Chi ở hai địa điểm cách nhau 18km đạp xe đi ngược chiều nhau để gặp nhau. Nếu hai bạn khởi hành cùng một lúc thì sẽ gặp nhau sau 40 phút. Nhưng nếu Linh khởi hành trước 18 phút thì các bạn sẽ gặp nhau sau 30 phút tính từ lúc Chi bắt đầu đi. Tính vận tốc của mỗi bạn? + Một chiếc cốc có dạng hình trụ với chiều cao 8cm, bán kính đáy là 3cm. Hỏi chiếc cốc này có đựng được 200ml sữa không? (Lấy pi = 3,14 và bỏ qua bề dày của chiếc cốc). + Từ điểm A ở ngoài đường tròn (O; R) vẽ hai tiếp tuyến AB, AC (B, C là các tiếp điểm) và cát tuyến ADE thuộc nửa mặt phẳng bờ là đường thẳng OA không chứa điểm B của đường tròn (O). Gọi H là giao điểm của OA và BC. 1) Chứng minh bốn điểm A, B, O, C cùng thuộc một đường tròn. 2) Chứng minh AO vuông góc BC tại H và AH.AO = AD.AE. 3) Đường thẳng đi qua điểm D và song song với đường thẳng BE cắt AB, BC lần lượt tại I, K. Chứng minh tứ giác OHDE nội tiếp và D là trung điểm của IK.
Đề khảo sát Toán 9 năm 2023 - 2024 phòng GDĐT Yên Định - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng học sinh môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Yên Định, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 05 tháng 04 năm 2024. Trích dẫn Đề khảo sát Toán 9 năm 2023 – 2024 phòng GD&ĐT Yên Định – Thanh Hóa : + Cho hàm số bậc nhất y = (m + 1)x + 2m – 5. Với giá trị nào của m thì đồ thị của hàm số trên cắt trục hoành tại điểm có hoành độ bằng -1. + Tìm m để phương trình: x2 + 5x + 3m – 1 = 0 (x là ẩn, m là tham số) có hai nghiệm x1, x2 thỏa mãn x13 – x23 + 3x1x2 = 75. + Cho đường tròn (O; R) và một đường thẳng d không có điểm chung với đường tròn. Trên d lấy một điểm M bất kì, qua M kẻ các tiếp tuyến MA, MB với đường tròn (A, B là các tiếp điểm). Kẻ cát tuyến MDE (D nằm giữa M và E, cắt bán kính OA). Gọi I là trung điểm DE. 1. Chứng minh tứ giác MAIO nội tiếp. 2. Gọi T là giao điểm của AB với MI. Chứng minh IA/IB = TA/TB. 3. Tìm giá trị nhỏ nhất của dây AB và diện tích MAOB nhỏ nhất.