Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG lớp 12 môn Toán THPT năm học 2019 2020 sở GD ĐT Vĩnh Phúc

Nội dung Đề thi chọn HSG lớp 12 môn Toán THPT năm học 2019 2020 sở GD ĐT Vĩnh Phúc Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi chọn HSG Toán lớp 12 THPT năm học 2019 – 2020 sở GD&ĐT Vĩnh Phúc, đề thi gồm có 01 trang với 10 bài toán dạng tự luận, thời gian làm bài 180 phút. Trích dẫn đề thi chọn HSG Toán lớp 12 THPT năm học 2019 – 2020 sở GD&ĐT Vĩnh Phúc : + Trong mặt phẳng với hệ trục toạ độ Oxy, cho tam giác ABC vuông tại A. Điểm D là chân đường phân giác trong góc A. Gọi M, N lần lượt là hình chiếu vuông góc của D trên AB, AC. Đường tròn (x + 2)^2 + (y – 1)^2 = 9 ngoại tiếp tam giác DMN. Gọi H là giao điểm của BN và CM, đường thẳng AH có phương trình 3x + y – 10 = 0. Tìm tọa độ điểm B biết M có hoành độ dương, A có hoành độ nguyên. + Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a, AA’ = a. Hình chiếu vuông góc của A’ trên mặt phẳng (ABC) trùng với trung điểm cạnh AB. Gọi I là trung điểm của A’C, điểm S thỏa mãn IB = 2SI. Tính theo a thể tích khối chóp S.AA’B’B. [ads] + Một hộp có 50 quả cầu được đánh số từ 1 đến 50. Lấy ngẫu nhiên 3 quả cầu từ hộp đó. Tính xác suất để tích 3 số ghi trên 3 quả cầu lấy được là một số chia hết cho 8. + Cho hàm số y = x^3 – 3x^2 – mx + 2  có đồ thị là (Cm). Tìm tất cả các giá trị thực của tham số m để (Cm) có điểm cực đại và điểm cực tiểu cách đều đường thẳng y = x – 1. + Cho tứ diện ABCD có G là trọng tâm tam giác BCD. Mặt phẳng (P) đi qua trung điểm I của AG và cắt các đoạn AB, AC, AD tại các điểm khác A. Gọi hA, hB, hC, hD lần lượt là khoảng cách từ các điểm A, B, C, D đến mặt phẳng (P). Chứng minh rằng: (hB^2 + hC^2 + hD^2)/3 ≥ hA^2.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán THPT cấp tỉnh năm 2022 2023 sở GDĐT Ninh Thuận
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán THPT cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Ninh Thuận; đề thi gồm 05 câu tự luận, thời gian làm bài 180 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào sáng thứ Bảy ngày 11 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi Toán THPT cấp tỉnh năm 2022 – 2023 sở GD&ĐT Ninh Thuận : + Gieo 5 con súc sắc cân đối, đồng chất. Kí hiệu xi (1 ≤ xi ≤ 6) là số chấm trên mặt xuất hiện của con súc sắc thứ i (i = 1, 2, 3, 4, 5). Tính xác suất để một trong các số x1, x2, x3, x4, x5 bằng tổng các số còn lại. + Cho tam giác ABC nhọn, không cân. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là một điểm tùy ý trên cạnh BC (khác B, C, D). Kẻ MK là đường kính của đường tròn ngoại tiếp tam giác BKF và NK là đường kính của đường tròn ngoại tiếp tam giác CKE. Gọi L là giao điểm thứ hai của đường tròn ngoại tiếp tam giác BKF và đường tròn ngoại tiếp tam giác CKE. 1) Chứng minh rằng năm điểm A, F, H, L, E cùng nằm trên một đường tròn. 2) Chứng minh rằng bốn điểm M, H, L, N thẳng hàng. + Tìm tất cả các số có ba chữ số sao cho mỗi số gấp 22 lần tổng các chữ số đó.
Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 - 2023 sở GDĐT Lào Cai
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Lào Cai; kỳ thi được diễn ra vào ngày 11 tháng 02 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm.
Đề học sinh giỏi Toán 12 cấp tỉnh năm 2022 - 2023 sở GDĐT Đồng Tháp
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 02 tháng 04 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm.
Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 - 2023 sở GDĐT Sóc Trăng
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Sóc Trăng; đề thi có đáp án và hướng dẫn chấm điểm.