Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Phúc Yên Vĩnh Phúc

Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Phúc Yên Vĩnh Phúc Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 năm 2023 - 2024 tại Phúc Yên - Vĩnh Phúc Đề thi học sinh giỏi Toán lớp 9 năm 2023 - 2024 tại Phúc Yên - Vĩnh Phúc Chúng tôi xin giới thiệu đến các thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 năm học 2023 - 2024 tại phòng Giáo dục và Đào tạo thành phố Phúc Yên, tỉnh Vĩnh Phúc. Đề thi bao gồm 01 trang với 10 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi học sinh giỏi Toán lớp 9 năm 2023 - 2024 phòng GD&ĐT Phúc Yên - Vĩnh Phúc: - Trong ngày Tết Trung thu, một rạp chiếu phim đã phục vụ khán giả một bộ phim hoạt hình với giá vé như sau: Loại I (dành cho trẻ từ 6 đến 13 tuổi): 50.000 đồng một vé và Loại II (dành cho người trên 13 tuổi): 100.000 đồng một vé. Để tránh lỗ, rạp chiếu phim cần thu được ít nhất 20 triệu đồng. Sau khi bán vé, nhân viên đã báo cáo lãnh đạo rằng đã bán được tổng cộng 500 vé. Lãnh đạo rạp chiếu phim khẳng định rằng họ không phải bù lỗ. Hãy giải thích tại sao họ đưa ra khẳng định này và tính số tiền lãi tối thiểu mà rạp đã thu được. - Xét ba điểm A, O, B thẳng hàng (O nằm giữa A và B). Vẽ hai tia Ax, By cùng vuông góc và cùng phía với AB. Dựng góc vuông uOv, tia Ou cắt Ax tại C, tia Ov cắt By tại D. Biết OA = a, OB = b, OC = 2a. Hãy tính diện tích hình thang ABDC theo a, b. - Trong tam giác đều ABC, E là điểm trên cạnh AC (không trùng với A), K là trung điểm của AE. Đường thẳng IF vuông góc với AB tại F và cắt đường thẳng CD vuông góc với BC tại D. a) Chứng minh BCKF là hình thang cân. b) Tìm vị trí của E sao cho đoạn KD ngắn nhất.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 9 năm 2013 - 2014 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 9 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 9 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho hai đường thẳng y = 6 + 2x và y = 3 – x. a. Tìm toạ độ giao điểm M của hai đường thẳng trên. b. Gọi giao điểm của hai đường thẳng trên với trục hoành theo thứ tự là A và B. Tính diện tích tam giác MAB. + Cho nửa đường tròn tâm O đường kính AB = 2R và tia tiếp tuyến Ax cùng phía với nửa đường tròn đối với AB. Từ điểm M trên Ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn (C là tiếp điểm). AC cắt OM tại E; MB cắt nửa đường tròn (O) tại D (D khác B). a) Chứng minh: AMDE là tứ giác nội tiếp đường tròn. b) Chứng minh: MA2 = MD.MB c) Vẽ CH vuông góc với AB (H AB). Chứng minh rằng MB đi qua trung điểm của CH. + Cho 4 số thực a b c d thỏa mãn điều kiện: ac 2.(b + d) Chứng minh rằng có ít nhất một trong các bất đẳng thức sau là sai: a 4b 2 c 4d.
Đề học sinh giỏi huyện Toán 9 năm 2012 - 2013 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 9 năm 2012 – 2013 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 9 năm 2012 – 2013 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho tam giác nhọn ABC BC a CA b AB c. Chứng minh rằng: 222 a b c bc cosA. + Cho nửa đường tròn (O) đường kính BC. Trên tia đối của tia CB lấy điểm A, qua A kẻ tiếp tuyến AF với đường tròn (O) ( F là tiếp điểm). Tia AF cắt tia tiếp tuyến Bx của nửa đường tròn (O) tại D (tia tiếp tuyến Bx nằm trong nửa mặt phẳng bờ BC chứa nửa đường tròn (O)). Gọi H là giao điểm của BF với DO; K là giao điểm thứ hai của DC với nửa đường tròn (O). a) Chứng minh rằng AO.AB = AF.AD. b) Chứng minh DHK DCO. c) Kẻ OM vuông góc với BC (M thuộc đoạn AD). Chứng minh rằng 1 BD DM DM AM. + Cho hai số thực dương x, y thay đổi thỏa mãn điều kiện 3 4 x y. Tìm giá trị nhỏ nhất của biểu thức 1 1 A x xy.