Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPTQG lần 1 năm 2019 - 2020 trường chuyên Quang Trung - Bình Phước

Chiều thứ Hai ngày 28 tháng 10 năm 2019, trường THPT chuyên Quang Trung, tỉnh Bình Phước tổ chức kỳ thi thử Trung học Phổ thông Quốc gia môn Toán năm học 2019 – 2020 lần thứ nhất dành cho học sinh khối 12 của nhà trường, kỳ thi vừa nhằm khảo sát chất lượng môn Toán 12 giai đoạn giữa học kỳ 1, vừa giúp học sinh khối 12 ôn luyện để chuẩn bị sớm cho kỳ thi THPT Quốc gia 2020 môn Toán. Đề thi thử Toán THPTQG lần 1 năm học 2019 – 2020 trường THPT chuyên Quang Trung – Bình Phước mã đề 111, đề được biên soạn với hình thức và cấu trúc tương tự đề thi THPT Quốc gia môn Toán năm 2019 vừa qua, nội dung đề bao quát toàn bộ kiến thức Toán 12, ngoài ra có một số câu thuộc chương trình Toán 10 và Toán 11, đề thi có đáp án. Trích dẫn đề thi thử Toán THPTQG lần 1 năm 2019 – 2020 trường chuyên Quang Trung – Bình Phước : + Cho số phức z = a + bi (a, b ∈ R) tùy ý. Mệnh đề nào sau đây đúng? A. z^2 = |z|^2. B. Số phức liên hợp của z có mô đun bằng mô đun của iz. C. Điểm M (−a;b) là điểm biểu diễn của z¯. D. Mô đun của z là một số thực dương. [ads] + Cho hình lăng trụ ABC.A’B’C’ có thể tích V. Biết tam giác ABC là tam giác đều cạnh a, các mặt bên là hình thoi, góc CC’B’ = 60 độ. Gọi G, G’ lần lượt là trọng tâm của tam giác BCB’ và tam giác A’B’C’. Tính theo V thể tích của khối đa diện GG’CA’. + Trong không gian với hệ trục tọa độ Oxyz, cho ba mặt phẳng (P): x + y + z + 5 = 0; (Q): x + y + z + 1 = 0 và (R): x + y + z + 2 = 0. Ứng với mỗi cặp A, B lần lượt thuộc hai mặt phẳng (P) và (Q) thì mặt cầu đường kính AB luôn cắt mặt phẳng (R) tạo thành một đường tròn. Tìm bán kính nhỏ nhất của đường tròn đó.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử THPTQG 2018 môn Toán trường THPT Đức Thọ - Hà Tĩnh
Đề thi thử THPTQG 2018 môn Toán trường THPT Đức Thọ – Hà Tĩnh mã đề 234 được biên soạn theo cấu trúc đề tham khảo môn Toán của Bộ Giáo dục và Đào tạo, đề gồm 5 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, đề gồm cả chương trình Toán 11 và Toán 12, đề thi thử Toán có đáp án tất cả các mã đề 123, 234, 309 và 410. Trích dẫn đề thi thử THPTQG 2018 môn Toán : + Trong một giải cờ vua gồm nam và nữ vận động viên. Mỗi vận động viên phải chơi hai ván với mỗi động viên còn lại. Cho biết có 2 vận động viên nữ và cho biết số ván các vận động viên chơi nam chơi với nhau hơn số ván họ chơi với hai vận động viên nữ là 84. Hỏi số ván tất cả các vận động viên đã chơi? + Trong không gian với hệ tọa độ Oxyz, xét tứ diện ABCD có các cặp cạnh đối diện bằng nhau và D khác phía với O so với (ABC); đồng thời A, B, C lần lượt là giao điểm của các trục Ox, Oy, Oz và (α): x/m + y/(m + 2) + z/(m – 5) = 1 (với m ≠ 0, m ≠ -2, m ≠ 5). Tìm khoảng cách ngắn nhất từ tâm mặt cầu ngoại tiếp I của tứ diện ABCD đến O. [ads] + Trong đợt hội trại “Khi tôi 18” được tổ chức tại trường THPT X, Đoàn trường có thực hiện một dự án ảnh trưng bày trên một pano có dạng parabol như hình vẽ. Biết rằng Đoàn trường sẽ yêu cầu các lớp gửi hình dự thi và dán lên khu vực hình chữ nhật ABCD, phần còn lại sẽ được trang trí hoa văn cho phù hợp. Chi phí dán hoa văn là 200.000 đồng cho một m2 bảng. Hỏi chi phí thấp nhất cho việc hoàn tất hoa văn trên pano sẽ là bao nhiêu (làm tròn đến hàng nghìn)?
Đề thi thử THPTQG 2018 môn Toán trường THPT chuyên Tiền Giang
Đề thi thử THPTQG 2018 môn Toán trường THPT chuyên Tiền Giang gồm 7 trang với 50 trắc nghiệm, thời gian làm bài 90 phút, không kể thời gian giao đề, kỳ thi được tổ chức vào ngày 08/03/2018. Trích dẫn đề thi thử THPTQG 2018 môn Toán : + Cho tứ diện ABCD có AB, AC, AD đôi một vuông góc. Chỉ ra mệnh đề sai trong các mệnh đề sau: A. Ba mặt phẳng (ABC), (ABD), (ACD) đôi một vuông góc. B. Tam giác BCD vuông. C. Hình chiếu của A lên mặt phẳng (BCD) là trực tâm tam giác BCD. D. Hai cạnh đối của tứ diện vuông góc. + Cho tam giác SOA vuông tại O có MN // SO với M, N lần lượt nằm trên cạnh SA, OA như hình vẽ bên. Đặt SO = h không đổi. Khi quay hình vẽ quanh SO thì tạo thành một hình trụ nội tiếp hình nón đỉnh S có đáy là hình tròn tâm O bán kính R = OA. Tìm độ dài của MN theo h để thể tích khối trụ là lớn nhất. [ads] + Trong các mệnh đề sau đây, mệnh đề nào đúng ? A. Hai đường thẳng phân biệt không chéo nhau thì cắt nhau. B. Hai đường thẳng phân biệt không song song thì chéo nhau. C. Hai đường thẳng phân biệt cùng nằm trong một mặt phẳng thì không chéo nhau. D. Hai đường thẳng phân biệt lần lượt thuộc hai mặt phẳng khác nhau thì chéo nhau.
Đề thi KSCL môn Toán THPTQG 2018 trường THPT chuyên Lam Sơn - Thanh Hóa lần 2
Đề thi KSCL môn Toán THPTQG 2018 trường THPT chuyên Lam Sơn – Thanh Hóa lần 2 mã đề 202 gồm 6 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, kỳ thi diễn ra vào ngày 04/03/2018 nhằm thi thử Toán chuẩn bị cho kỳ thi THPTQG 2018, đề thi thử được biên soạn với cấu trúc tương tự đề minh họa Toán do Bộ Giáo dục và Đào tạo ban hành, đề thi thử Toán có đáp án và lời giải chi tiết . Trích dẫn đề thi KSCL môn Toán THPTQG 2018 : + An và Bình cùng tham gia kỳ thi THPTQG năm 2018, ngoài thi ba môn Toán, Văn, Tiếng Anh bắt buộc thì An và Bình đều đăng ký thi thêm đúng hai môn tự chọn khác trong ba môn Vật lý, Hóa học và Sinh học dưới hình thức thi trắc nghiệm để xét tuyển Đại học. Mỗi môn tự chọn trắc nghiệm có 8 mã đề thi khác nhau. Tìm xác suất để An và Bình có chung đúng một môn thi tự chọn và chung một mã đề. [ads] + Xét tứ diện OABC có OA, OB, OC đôi một vuông góc. Gọi α, β, γ lần lượt là góc giữa các đường thẳng OA, OB, OC với mặt phẳng (ABC) (hình vẽ). Khi đó giá trị nhỏ nhất của biểu thức M = (3 + (cotα)^2).(3 + (cotβ)^2).(3 + (cotγ)^2) là? + Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x – 1)^2 + (y – 2)^2 + (z – 3)^2 = 16 và các điểm A(1;0;2), B(-1;2;2). Gọi (P) là mặt phẳng đi qua hai điểm A, B sao cho thiết diện của mặt phẳng (P) với mặt cầu (S) có diện tích nhỏ nhất. Khi viết phương trình (P) dưới dạng ax + by + cz + 3 = 0. Tính T = a + b + c.
Đề thi thử Đại học môn Toán lần 2 trường THPT Hà Huy Tập - Hà Tĩnh
Đề thi thử Đại học môn Toán lần 2 trường THPT Hà Huy Tập – Hà Tĩnh mã đề 002 được biên soạn theo cấu trúc tương tự đề minh họa môn Toán 2018 do Bộ Giáo dục và Đào tạo ban hành hồi tháng 1/2018, đề thi thử Toán gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, nội dung đề gôm chương trình Toán 11 và Toán 12. Trích dẫn đề thi thử Đại học lần 2 môn Toán : + Bên cạnh con đường trước khi vào thành phố người ta xây một ngọn tháp. Ngọn tháp có dạng một hình chóp tứ giác S.ABCD có đáy ABCD là một hình vuông, SA = SB = SC = SD = 600m và góc ASB = góc BSC = góc CSD = góc DSA = 15 độ. Do có sự cố đường dây điện tại điểm Q (là trung điểm của SA) bị hỏng, người ta tạo ra một con đường điện từ A đến Q gồm 4 đoạn thẳng AM, MN, NP và PQ (Hình vẽ). Để tiết kiệm kinh phí, kĩ sư đã nghiên cứu và có được chiều dài đường điện từ A đến Q ngắn nhất. Khi đó hãy cho biết tỉ số k = (AM + MN)/(NP + PQ). [ads] + Cho đa giác đều 32cạnh. Gọi S là tập hợp các tứ giác tạo thành có 4 đỉnh lấy từ các đỉnh của đa giác đều. Chọn ngẫu nhiên một phần tử của S. Xác suất để chọn được một hình chữ nhật là? + Trong không gian với hệ tọa độ Oxyz cho điểm A(2;1;2) và mặt cầu (S): x^2 + y^2 + z^2 – 2y – 2z – 7 = 0. Mặt phẳng (P) đi qua A và cắt (S) theo thiết diện là đường tròn (C) có diện tích nhỏ nhất. Bán kính đường tròn (C) là?