Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPTQG lần 1 năm 2019 - 2020 trường chuyên Quang Trung - Bình Phước

Chiều thứ Hai ngày 28 tháng 10 năm 2019, trường THPT chuyên Quang Trung, tỉnh Bình Phước tổ chức kỳ thi thử Trung học Phổ thông Quốc gia môn Toán năm học 2019 – 2020 lần thứ nhất dành cho học sinh khối 12 của nhà trường, kỳ thi vừa nhằm khảo sát chất lượng môn Toán 12 giai đoạn giữa học kỳ 1, vừa giúp học sinh khối 12 ôn luyện để chuẩn bị sớm cho kỳ thi THPT Quốc gia 2020 môn Toán. Đề thi thử Toán THPTQG lần 1 năm học 2019 – 2020 trường THPT chuyên Quang Trung – Bình Phước mã đề 111, đề được biên soạn với hình thức và cấu trúc tương tự đề thi THPT Quốc gia môn Toán năm 2019 vừa qua, nội dung đề bao quát toàn bộ kiến thức Toán 12, ngoài ra có một số câu thuộc chương trình Toán 10 và Toán 11, đề thi có đáp án. Trích dẫn đề thi thử Toán THPTQG lần 1 năm 2019 – 2020 trường chuyên Quang Trung – Bình Phước : + Cho số phức z = a + bi (a, b ∈ R) tùy ý. Mệnh đề nào sau đây đúng? A. z^2 = |z|^2. B. Số phức liên hợp của z có mô đun bằng mô đun của iz. C. Điểm M (−a;b) là điểm biểu diễn của z¯. D. Mô đun của z là một số thực dương. [ads] + Cho hình lăng trụ ABC.A’B’C’ có thể tích V. Biết tam giác ABC là tam giác đều cạnh a, các mặt bên là hình thoi, góc CC’B’ = 60 độ. Gọi G, G’ lần lượt là trọng tâm của tam giác BCB’ và tam giác A’B’C’. Tính theo V thể tích của khối đa diện GG’CA’. + Trong không gian với hệ trục tọa độ Oxyz, cho ba mặt phẳng (P): x + y + z + 5 = 0; (Q): x + y + z + 1 = 0 và (R): x + y + z + 2 = 0. Ứng với mỗi cặp A, B lần lượt thuộc hai mặt phẳng (P) và (Q) thì mặt cầu đường kính AB luôn cắt mặt phẳng (R) tạo thành một đường tròn. Tìm bán kính nhỏ nhất của đường tròn đó.

Nguồn: toanmath.com

Đọc Sách

Đề thi KSCĐ lần 1 năm học 2017 - 2018 môn Toán 12 trường THPT Phạm Công Bình - Vĩnh Phúc
Đề thi khảo sát chuyên đề (KSCĐ) lần 1 năm học 2017 – 2018 môn Toán 12 trường THPT Phạm Công Bình – Vĩnh Phúc gồm 6 mã đề, mỗi đề gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút, tất cả các mã đề đều có đáp án. Trích dẫn đề thi : + Một ngọn hải đăng đặt tại vị trí A có khoảng cách đến bờ biển AB = 5km. Trên bờ biển có một cái kho ở vị trí C cách B một khoảng 7km. Người canh hải đăng có thể chèo đò từ A đến M trên bờ biển với vận tốc 4 km/h rồi đi bộ đến C với vận tốc 6 km/h. Vị trí của điểm M cách B một khoảng bao nhiêu để người đó đi đến kho nhanh nhất? A. (14 + 5√5)/12 km B. 2√5 km C. 0 km D. 7 km [ads] + Trong các mệnh đề sau, mệnh đề nào đúng? A. Hai khối chóp có hai đáy là tam giác đều bằng nhau thì thể tích bằng nhau B. Hai khối đa diện có thể tích bằng nhau thì bằng nhau C. Hai khối đa diện bằng nhau có thể tích bằng nhau D. Hai khối lăng trụ có chiều cao bằng nhau thì thể tích bằng nhau + Cho tam giác ABC với trọng tâm G. Gọi A’, B’, C’ lần lượt là trung điểm của các cạnh BC, AC, AB của tam giác ABC. Phép vị tự biến tam giác A’B’C’ thành tam giác ABC là: A. Phép vị tự tâm G, tỉ số k = 2 B. Phép vị tự tâm G, tỉ số k = -2 C. Phép vị tự tâm G, tỉ số k = -3 D. Phép vị tự tâm G, tỉ số k = 3
Đề thi khảo sát chất lượng lần 1 môn Toán 12 trường THPT Xuân Hòa - Vĩnh Phúc
Đề thi khảo sát chất lượng lần 1 môn Toán 12 trường THPT Xuân Hòa – Vĩnh Phúc gồm 6 mã đề, mỗi mã đề gồm 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi : + Trong các hàm số sau, hàm số nào là hàm số chẵn. A. y = sin|2016x| + cos2017x B. y = 2016cosx + 2017sinx C. y = cot2015x – 2016sinx D. y = tan2016x + cot2017x [ads] + Cho hàm số: y = x^3 + 2mx^2 + 3(m – 1)x + 2 có đồ thị (C). Đường thẳng d: y = -x + 2 cắt đồ thị (C) tại ba điểm phân biệt A(0; -2), B và C . Với M (3; 1), giá trị của tham số m để tam giác MBC có diện tích bằng 2√6 là: A. m = −1 B. m = −1 hoặc m = 4 C. m = 4 D. Không tồn tại m + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I, cạnh bên SA vuông góc với đáy. H, K lần lượt là hình chiếu của A lên SC, SD. Khẳng định nào sau đây đúng? A. AH ⊥ (SCD) B. BD ⊥ (SAC) C. AK ⊥ (SCD) D. BC ⊥ (SAC)
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT Đội Cấn - Vĩnh Phúc lần 1
Đề thi thử THPT Quốc gia 2018 môn Toán trường THPT Đội Cấn – Vĩnh Phúc lần 1 gồm 6 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi : + Một công ty muốn làm một đường ống dẫn dầu từ một kho A ở trên bờ đến một vị trí B trên một hòn đảo. Hòn đảo cách bờ biển 6 km. Gọi C là điểm trên bờ sao cho BC vuông góc với bờ biển. Khoảng cách từ A đến C là 9 km. Người ta cần xác định một vị trí D trên AC để lắp ống dẫn theo đường gấp khúc ADB. Để số tiền chi phí thấp nhất mà công ty phải thì khoảng cách từ A đến D là bao nhiêu km, biết rằng chi phí để hoàn thành mỗi km đường ống trên bờ là 100 triệu đồng và dưới nước là 260 triệu đồng. A. 8 km B. 5 km C. 7,5 km D. 6,5 km [ads] + Từ các chữ số 0,1, 2,3, 4,5,6,7 có thể lập được bao nhiêu số tự nhiên có 5 chữ số đôi một khác nhau sao cho có đúng 3 chữ số chẵn và 2 chữ số lẻ? A. 2448 B. 3600 C. 2324 D. 2592 + Khẳng định nào sau đây là đúng? A. Hàm số y = tanx nghịch biến trên khoảng (0; π/2) B. Hàm số y = sinx đồng biến trên khoảng (0; π) C. Hàm số y = cotx nghịch biến trên khoảng (0; π) D. Hàm số y = cosx đồng biến trên khoảng (0; π)
Đề thi thử THPT Quốc gia lần 1 năm học 2017 - 2018 môn Toán trường THPT Yên Lạc 2 - Vĩnh Phúc
Đề thi thử THPT Quốc gia lần 1 năm học 2017 – 2018 môn Toán trường THPT Yên Lạc 2 – Vĩnh Phúc gồm 8 mã đề, mỗi mã đề gồm 50 câu hỏi trắc nghiệm, thời gian làm 90 phút, tất cả các mã đề đều có đáp án . Trích dẫn đề thi : + Đồ thị của hàm số y = x^3 – 3x cắt: A. Đường thẳng y = 3 tại hai điểm B. Đường thẳng y = −4 tại hai điểm C. Đường thẳng y = 5/3 tại ba điểm D. Trục hoành tại một điểm [ads] + Giả sử tỉ lệ tăng giá xăng của Việt Nam trong 10 năm qua là 5%/ năm. Hỏi nếu năm 2007, giá xăng là 12000VND/lít thì năm 2017 giá xăng là bao nhiêu? A. 17616,94 B. 18615,94 C. 19546,74 D. 12600 + Cho hàm số y = f(x) xác định trên khoảng K. Điều kiện đủ để hàm số y = f(x) đồng biến trên K là: A. f'(x) > 0 với mọi x ∈ K B. f'(x) > 0 tại hữu hạn điểm thuộc khoảng K C. f'(x) ≤ 0 với mọi x ∈ K D. f'(x) ≥ 0 với mọi x ∈ K