Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh lớp 10 THPT năm 2019 - 2020 sở GDĐT Bắc Giang

Sáng Chủ Nhật ngày 02 tháng 06 năm 2019, sở Giáo dục và Đào tạo tỉnh Bắc Giang tổ chức kỳ thi Toán tuyển sinh vào lớp 10 Trung học Phổ thông năm học 2019 – 2020. Đề Toán tuyển sinh lớp 10 THPT năm 2019 – 2020 sở GD&ĐT Bắc Giang được biên soạn theo dạng đề kết hợp trắc nghiệm khách quan và tự luận, phần trắc nghiệm gồm 20 câu, phần tự luận gồm 5 câu, thời gian học sinh làm bài 120 phút (không tính thời gian phát đề). Trích dẫn đề Toán tuyển sinh lớp 10 THPT năm 2019 – 2020 sở GD&ĐT Bắc Giang : + Đầu năm học, Hội khuyến học của một tỉnh tặng cho trường A tổng số 245 quyển sách gồm sách Toán và sách Ngữ văn. Nhà trường đã dùng 1/2 số sách Toán và 2/3 số sách Ngữ văn đó để phát cho các bạn học sinh có hoàn cảnh khó khăn. Biết rằng mỗi bạn nhận được một quyển sách Toán và một quyển sách Ngữ văn. Hỏi Hội khuyến học tỉnh đã tặng cho trường A mỗi loại sách bao nhiêu quyền? [ads] + Cho tam giác ABC nội tiếp đường tròn (O) đường kính AC (BA < BC). Trên đoạn thẳng AC lấy điểm I bất kỳ (I khác C). Đường thẳng BI cắt đường tròn (O) tại điểm thứ hai là D. Kẻ CH vuông góc với BD (H thuộc BD), DK vuông góc với AC (K thuộc AC). a) Chứng minh rằng tứ giác DHKC là tứ giác nội tiếp. b) Cho độ dài đoạn thẳng AC là 4cm và ABD = 60°. Tính diện tích tam giác ACD. c) Đường thẳng đi qua K song song với BC cắt đường thẳng BD tại E. Chứng minh rằng khi I thay đổi trên đoạn thẳng OC (I khác C) thì điểm E luôn thuộc một đường tròn cố định. + Cho x, y là các số thực thỏa mãn điều kiện x^2 + y^2 = 1. Tìm giá trị nhỏ nhất của biểu thức P = (3 – x)(3 – y).

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Nghệ An
Nội dung Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Nghệ An Bản PDF - Nội dung bài viết Đề Thi Tuyển Sinh Môn Toán Năm 2021-2022 Sở GD&ĐT Nghệ An Đề Thi Tuyển Sinh Môn Toán Năm 2021-2022 Sở GD&ĐT Nghệ An Ngày 04 tháng 06 năm 2021, Sở Giáo dục và Đào tạo tỉnh Nghệ An đã tổ chức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán cho năm học 2021-2022. Đề tuyển sinh môn Toán cho lớp 10 năm 2021-2022 của Sở GD&ĐT Nghệ An bao gồm 01 trang với 07 bài toán dạng tự luận. Thời gian làm bài thi là 120 phút, đề thi đi kèm đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề tuyển sinh chuyên môn Toán năm 2021 2022 sở GD ĐT Quảng Trị
Nội dung Đề tuyển sinh chuyên môn Toán năm 2021 2022 sở GD ĐT Quảng Trị Bản PDF - Nội dung bài viết Đề tuyển sinh chuyên môn Toán năm 2021 - 2022 sở GD&ĐT Quảng Trị Đề tuyển sinh chuyên môn Toán năm 2021 - 2022 sở GD&ĐT Quảng Trị Sytu xin gửi đến quý thầy cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 - 2022 sở GD&ĐT Quảng Trị. Kỳ thi sẽ diễn ra vào sáng thứ Sáu ngày 04 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 - 2022 sở GD&ĐT Quảng Trị: Điểm số trung bình của một vận động viên bắn súng sau 40 lần bắn là 8,25 điểm. Cần xác định lại các số trong hai ô bị mờ. Chứng minh các tính chất liên quan đến tứ giác, tam giác, và các điểm trên đường tròn. Giải quyết bài toán về các số thực thỏa mãn điều kiện cho trước. Mong rằng đề tuyển sinh này sẽ giúp các em học sinh nắm vững kiến thức, chuẩn bị tốt cho kỳ thi sắp tới. Chúc quý thầy cô và các em đạt kết quả cao trong kỳ thi!
Đề Toán (chung) thi vào 10 năm 2021 2022 trường chuyên Lê Quý Đôn BR VT
Nội dung Đề Toán (chung) thi vào 10 năm 2021 2022 trường chuyên Lê Quý Đôn BR VT Bản PDF - Nội dung bài viết Đề Toán (chung) thi vào 10 năm 2021 – 2022 trường chuyên Lê Quý Đôn – BR VT Đề Toán (chung) thi vào 10 năm 2021 – 2022 trường chuyên Lê Quý Đôn – BR VT Xin chào quý thầy cô và các em học sinh! Hôm nay chúng ta sẽ cùng điểm qua nội dung của đề Toán (chung) thi vào 10 năm 2021 – 2022 của trường chuyên Lê Quý Đôn – BR VT. Đề thi được diễn ra vào sáng thứ Sáu ngày 04 tháng 06 năm 2021. Trích dẫn đề Toán (chung) thi vào 10 năm 2021 – 2022 trường chuyên Lê Quý Đôn – BR VT: + Bài toán 1: Theo kế hoạch, một đội xe phải chở 150 tấn hàng từ khu công nghiệp ở huyện Châu Đức đến cảng Cái Mép – Thị Vải. Đội có 5 xe phải đi làm việc khác, nên mỗi xe còn lại phải chở thêm 5 tấn hàng. Hỏi số xe lúc đầu của đội? + Bài toán 2: Cho đường tròn (O) và điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC của đường tròn (O) (B, C là các tiếp điểm). Một đường thẳng đi qua A cắt đường tròn (O) tại hai điểm phân biệt D, K (D nằm giữa A, K và B, D nằm cùng phía đối với đường thẳng OA). Gọi H là giao điểm của AO và BC. Hãy chứng minh các phần sau: a) ABOC là tứ giác nội tiếp. b) AD.AK = AB2 và CD.AK + OH/OA = OA2. c) OAD = ODH. d) K, M, P thẳng hàng với P là trung điểm của AB và M là giao điểm của đường thẳng qua D và vuông góc với OB với BC. + Bài toán 3: Với x, y là các số thực dương, tìm giá trị lớn nhất của biểu thức S = 2x + 3y. Chúc quý thầy cô và các em học sinh có những giây phút ôn tập hiệu quả để đạt kết quả cao trong kỳ thi sắp tới. Cảm ơn và chúc mọi người thành công!
Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Khánh Hòa
Nội dung Đề tuyển sinh môn Toán năm 2021 2022 sở GD ĐT Khánh Hòa Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2021-2022 của sở GD&ĐT Khánh Hòa Đề tuyển sinh môn Toán năm 2021-2022 của sở GD&ĐT Khánh Hòa Vào thứ Năm, ngày 03 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Khánh Hòa đã tổ chức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán cho năm học 2021-2022. Đề thi bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài là 120 phút, có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn từ đề tuyển sinh môn Toán lớp 10 năm 2021-2022 của sở GD&ĐT Khánh Hòa: Đề bài 1: Công an tỉnh Khánh Hòa cấp 7200 thẻ Căn cước công dân cho địa phương A. Tổ công tác đã cải tiến kĩ thuật nên mỗi ngày đã cấp thêm được 40 thẻ Căn cước so với kế hoạch ban đầu. Hỏi ban đầu, mỗi ngày tổ công tác cấp được bao nhiêu thẻ? Đề bài 2: Chứng minh BCEF là tứ giác nội tiếp đường tròn. Đề bài 3: Tính giá trị biểu thức AM BN CP AD BE CF. Đề bài 4: Xác định tọa độ điểm A thuộc parabol và điểm giao của đường thẳng d và P. Đề thi môn Toán năm 2021-2022 của sở GD&ĐT Khánh Hòa đầy thách thức và mang tính toán học sáng tạo, khám phá, hỗ trợ học sinh phát triển kỹ năng suy luận logic và giải quyết vấn đề.