Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng lớp 12 môn Toán năm 2018 2019 trường THPT chuyên Hùng Vương Phú Thọ

Nội dung Đề khảo sát chất lượng lớp 12 môn Toán năm 2018 2019 trường THPT chuyên Hùng Vương Phú Thọ Bản PDF Sytu giới thiệu đến bạn đọc bản lời giải chi tiết đề khảo sát chất lượng Toán lớp 12 năm 2018 – 2019 trường THPT chuyên Hùng Vương – Phú Thọ, đề nhằm đánh giá năng lực môn Toán của học sinh giai đoạn khởi động năm học, đồng thời giúp học sinh ôn lại các kiến thức Toán lớp 10, Toán sau kỳ nghỉ hè kéo dài. Lời giải chi tiết được biên soạn và trình bày bởi quý thầy, cô giáo nhóm Strong Team Toán VD-VDC. Trích dẫn đề khảo sát chất lượng Toán lớp 12 năm 2018 – 2019 trường THPT chuyên Hùng Vương – Phú Thọ : + Một vật chuyển động trong 3 giờ với vận tốc v (km/h) phụ thuộc thời gian t(h) có đồ thị là một phần của đường parabol có đỉnh I (2;9) và trục đối xứng song song với trục tung như hình vẽ. Vận tốc tức thời của vật tại thời điểm 2 giờ 30 phút sau khi vật bắt đầu chuyển động gần bằng giá trị nào nhất trong các giá trị sau? [ads] + Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 24 gam hương liệu, 9 lít nước và 210 gam đường để pha chế nước ngọt loại I và nước ngọt loại II. Để pha chế 1 lít nước ngọt loại I cần 10 gam đường, 1 lít nước và 4 gam hương liệu. Để pha chế 1 lít nước ngọt loại II cần 30 gam đường, 1 lít nước và 1 gam hương liệu. Mỗi lít nước ngọt loại I được 80 điểm thưởng, mỗi lít nước ngọt loại II được 60 điểm thưởng. Hỏi số điểm thưởng cao nhất có thể của mỗi đội trong cuộc thi là bao nhiêu? + Một người muốn có 1 tỉ tiền tiết kiệm sau 6 năm gửi ngân hàng bằng cách bắt đầu từ ngày 01/01/2019 đến 31/12/2024, vào ngày 01/01 hàng năm người đó gửi vào ngân hàng một số tiền bằng nhau với lãi suất ngân hàng là 7% /1 năm (tính từ ngày 01/01 đến ngày 31/12) và lãi suất hàng năm được nhập vào vốn. Hỏi số tiền mà người đó phải gửi vào ngân hàng hàng năm là bao nhiêu (với giả thiết lãi suất không thay đổi và số tiền được làm tròn đến đơn vị đồng)?

Nguồn: sytu.vn

Đọc Sách

Đề KSCL Toán thi TN THPT 2022 lần 3 trường chuyên Lam Sơn - Thanh Hóa
Thứ Bảy ngày 11 tháng 06 năm 2022, trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa tổ chức kỳ thi khảo sát chất lượng các môn thi tốt nghiệp Trung học Phổ thông năm học 2021 – 2022 lần thứ ba. Đề KSCL Toán thi TN THPT 2022 lần 3 trường chuyên Lam Sơn – Thanh Hóa mã đề 160 gồm có 06 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút (không kể thời gian phát đề), đề thi có đáp án Mã đề 142 Mã đề 149 Mã đề 160 Mã đề 176 Mã đề 183 Mã đề 194 Mã đề 210 Mã đề 217. Trích dẫn đề KSCL Toán thi TN THPT 2022 lần 3 trường chuyên Lam Sơn – Thanh Hóa : + Cho a b là các số nguyên dương nhỏ hơn 2022. Gọi S là tập các giá trị của b thỏa mãn: Với mỗi giá trị của b luôn có ít nhất 100 giá trị không nhỏ hơn 3 của a thỏa mãn 2 2 log 4 1 a b b a b a b đồng thời các tập hợp có b phần tử có số tập con lớn hơn 1024. Số phần tử của tập S là? + Trong không gian Oxyz cho tam giác ABC có A B C 3 1 4 2 0 0 4 0 0. Trên các tia Bm Cn cùng phía và vuông góc với mặt phẳng ABC lần lượt lấy các điểm M N thỏa mãn BM CN. Gọi I là trung điểm BC và E là điểm đối xứng của I qua trực tâm tam giác AMN. Biết khi M N di động thì E nằm trên một đường tròn cố định. Tính bán kính đường tròn đó. + Cho hàm số bậc ba y f x có đồ thị C như hình vẽ. Biết đồ thị hàm số cắt trục hoành tại ba điểm có hoành độ 1 2 3 x x x theo thứ tự lập thành cấp số cộng và 3 1 x x 2 3. Gọi diện tích hình phẳng giới hạn bởi C và trục Ox là S diện tích 1 S của hình phẳng giới hạn bởi các đường 1 y f x y f x x x 2 2 và 3 x x bằng?
Đề KSCL Toán 12 thi tốt nghiệp THPT 2022 lần 2 trường THPT chuyên Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán 12 ôn thi tốt nghiệp THPT năm 2022 lần 2 trường THPT chuyên Vĩnh Phúc, tỉnh Vĩnh Phúc; đề thi có đáp án mã đề 109. Trích dẫn đề KSCL Toán 12 thi tốt nghiệp THPT 2022 lần 2 trường THPT chuyên Vĩnh Phúc : + Trong không gian Oxyz cho mặt cầu 2 2 2 S x y z x y z 2 4 6 13 0 và đường thẳng 1 4 1 2 2 1 x y z d. Tọa độ điểm M trên đường thẳng d sao cho từ M kẻ được 3 tiếp tuyến MA MB MC đến mặt cầu S (A B C là các tiếp điểm) thỏa mãn AMB 60 BMC 90 CMA 120 có dạng M a b c với c 0. Tính tổng a b c. + Cho hình trụ có đáy là hai đường tròn tâm O và O đường kính đáy bằng chiều cao và bằng 2a. Trên đường tròn đáy có tâm O lấy điểm A trên đường tròn tâm O lấy điểm B. Đặt là góc giữa AB và đáy. Biết rằng thể tích khối tứ diện OO AB đạt giá trị lớn nhất. Khẳng định nào sau đây đúng? + Cho y f x là hàm đa thức bậc 4 và có đồ thị như hình vẽ. Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn 12 12 để hàm số g x f x m 2 1 có 5 điểm cực trị?
Đề KSCL lần 3 Toán 12 năm 2021 - 2022 trường THPT Nguyễn Viết Xuân - Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng lần 3 môn Toán 12 năm học 2021 – 2022 trường THPT Nguyễn Viết Xuân, tỉnh Vĩnh Phúc. Trích dẫn đề KSCL lần 3 Toán 12 năm 2021 – 2022 trường THPT Nguyễn Viết Xuân – Vĩnh Phúc : + Trong không gian với hệ trục tọa độ Oxyz gọi P là mặt phẳng đi qua điểm H 1 2 5 và cắt các trục Ox Oy Oz lần lượt tại A B C (khác gốc tọa độ O) sao cho H là trực tâm tam giác ABC. Biết mặt phẳng P có phương trình ax by cz 30 0. Tính tổng T a b c. + Trong không gian Oxyz, cho điểm A 1 1 3 và 2 đường thẳng 1 4 2 1 1 4 2 x y z d 2 2 1 1 1 1 1 x y z d. Đường thẳng d đi qua A cắt 2 d và vuông góc với 1 d. Mặt phẳng P đi qua gốc tọa độ và chứa đường thẳng d. Biết mặt phẳng P có một véc tơ pháp tuyến là n a b 1. Biểu thức a b 1 bằng? + Cho hình trụ có chiều cao bằng 4a. Biết rằng khi cắt hình trụ đã cho bởi một mặt phẳng song song với trục và cách trục một khoảng bằng 3a, thiết diện thu được là một hình vuông. Thể tích của khối trụ đã cho bằng?
Đề KSCL Toán 12 thi tốt nghiệp THPT 2022 lần 1 trường THPT chuyên Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán 12 ôn thi tốt nghiệp THPT năm 2022 lần 1 trường THPT chuyên Vĩnh Phúc, tỉnh Vĩnh Phúc. Trích dẫn đề KSCL Toán 12 thi tốt nghiệp THPT 2022 lần 1 trường THPT chuyên Vĩnh Phúc : + Gọi 1z 2 z là hai số phức thỏa mãn đồng thời hai điều kiện 2 5 1 5 z i z mi z m 2 với m là số thực tùy ý. Gọi A B lần lượt là điểm biểu diễn hình học của 1z 2 z. Gọi S là tập các giá trị của m để diện tích tam giác ABI là lớn nhất với I 1 1. Tổng bình phương các phần tử của S bằng? + Trong không gian Oxyz cho hai điểm A B 1 2 3 3 4 5 và mặt phẳng Px y z 2 3 14 0. Gọi là một đường thẳng thay đổi nằm trong mặt phẳng P. Gọi H K lần lượt là hình chiếu vuông góc của A B trên. Biết rằng khi AH BK thì trung điểm của HK luôn thuộc một đường thẳng d cố định, phương trình của đường thẳng d là? + Cho đường thẳng y x a (a là tham số thực dương) và đồ thị hàm số y x. Gọi 1 2 S S lần lượt là diện tích hai hình phẳng được gạch chéo trong hình vẽ bên. Khi 1 2 5 3 S S thì a thuộc khoảng nào dưới đây?