Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra lớp 11 môn Toán lần 1 năm 2020 2021 trường Yên Phong 1 Bắc Ninh

Nội dung Đề kiểm tra lớp 11 môn Toán lần 1 năm 2020 2021 trường Yên Phong 1 Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề kiểm tra chất lượng môn Toán lớp 11 lần 1 năm học 2020 – 2021 trường THPT Yên Phong số 1, tỉnh Bắc Ninh; đề được biên soạn theo hình thức đề 100% trắc nghiệm với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề kiểm tra Toán lớp 11 lần 1 năm 2020 – 2021 trường Yên Phong 1 – Bắc Ninh : + Chị Hạnh đi chợ mua 3 mớ rau cải và nửa cân thịt lợn hết 95 ngàn. Anh Phúc đi chợ mua 5 mớ rau cải và 2 cân thịt lợn hết 345 ngàn. Hỏi một cân thịt lợn giá bao nhiêu tiền, biết giá một mớ rau cải và một cân thịt lợn mà anh Phúc và chị Hạnh mua không thay đổi. + Trong cùng một mặt phẳng cho 6 điểm A, B, C, D, E, F, trong đó không có 3 điểm nào thẳng hàng. Giữa 2 điểm bất kì ta đặt một que diêm. Bỏ 9 que diêm từ các que diêm vừa xếp. Tính xác suất để khi bỏ ra, từ một điểm bất kì, ta luôn có một đường đi bằng diêm đến điểm bất kì khác. + Trong đại dịch Covid – 19, người ta đã thống kê hết tháng 1 năm 2020, thế giới có 2100 người tử vong, sau đó cứ liên tục tháng sau nhiều hơn tháng trước 1000 người tử vong. Đến hết tháng 12 năm 2020, tổng số người tử vong trên toàn thế giới là: A. 91200 người. B. 90000người. C. 81200 người. D. 13100người. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát lần 2 Toán 11 năm 2023 - 2024 trường THPT Yên Lạc - Vĩnh Phúc
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề khảo sát chất lượng lần 2 môn Toán 11 năm học 2023 – 2024 trường THPT Yên Lạc, tỉnh Vĩnh Phúc; đề thi có đáp án trắc nghiệm mã đề 501. Trích dẫn Đề khảo sát lần 2 Toán 11 năm 2023 – 2024 trường THPT Yên Lạc – Vĩnh Phúc : + Trong mặt phẳng (α) cho tam giác ABC vuông tại A biết 0 B AB a 60. Gọi O là trung điểm của BC. Lấy điểm S ở ngoài mặt phẳng (α) sao cho SB a SB OA. Gọi M là điểm trên cạnh AB. Mặt phẳng (α) qua M song song với SB và OA cắt BC SC SA lần lượt tại N PQ. Đặt BM x a. Xác định x để diện tích thiết diện của hình chóp với mặt phẳng (α) là lớn nhất. + Cường độ dòng điện i (ampe) qua một mạch điện xoay chiều được tính bởi công thức 10 2 cos 4 t i π trong đó t là thời gian tính bằng giây. Xác định thời điểm đầu tiên cường độ dòng điện bằng 5 2 ampe. + Gọi S là tập hợp tất cả các giá trị thực của tham số m để giá trị nhỏ nhất của hàm số 4 y x xm sin cos 2 bằng 2. Số phần tử của S là?
Đề khảo sát lần 1 Toán 11 năm 2023 - 2024 trường THPT Thạch Thành 2 - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề khảo sát chất lượng lần 1 môn thi Toán 11 năm học 2023 – 2024 trường THPT Thạch Thành 2, tỉnh Thanh Hóa; đề thi có đáp án trắc nghiệm mã đề 111. Trích dẫn Đề khảo sát lần 1 Toán 11 năm 2023 – 2024 trường THPT Thạch Thành 2 – Thanh Hóa : + Cho một bài toán có sơ đồ như sau: Để giải bài toán khi muốn chọn 1 thực đơn gồm 1 loại đồ uống và 1 loại cơm ta dùng: A. quy tắc nhân. B. kết hợp quy tắc cộng và quy tắc nhân. C. quy tắc cộng. D. chỉnh hợp. + Anh An canh gác ở ngọn hải đăng đặt tại vị trí A cách bờ biển một khoảng cách AB km 4. Trên bờ biển có một cái chợ ở vị trí C cách B một khoảng 7km. Anh An chèo thuyền từ ngọn hải đăng A đến vị trí M trên bờ biển với vận tốc 3 km h rồi đi bộ đến C với vận tốc 5 km h. Biết rằng khoảng cách từ vị trí A đến M là a km và thời gian anh An đi từ A đến C (qua M) là 148 phút. Khi đó giá trị của biểu thức 2 8 a P bằng? + Một công ty trách nhiệm hữu hạn thực hiện việc trả lương cho các kĩ sư theo phương thức sau: Mức lương của quý làm việc đầu tiên cho công ty là 23,6 triệu đồng/quý, và kể từ quý làm việc thứ hai, mức lương sẽ được tăng thêm 2,5 triệu đồng mỗi quý. Hãy tính tổng số tiền lương một kĩ sư nhận được sau 3 năm làm việc cho công ty.
Đề thi KSCL lần 1 Toán 11 năm 2023 - 2024 trường THPT Nông Cống 3 - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi khảo sát chất lượng lần 1 môn Toán 11 năm học 2023 – 2024 trường THPT Nông Cống 3, tỉnh Thanh Hóa; đề thi có đáp án trắc nghiệm mã đề 711 – 712 – 713 – 714. Trích dẫn Đề thi KSCL lần 1 Toán 11 năm 2023 – 2024 trường THPT Nông Cống 3 – Thanh Hóa : + Trong mặt phẳng tọa độ Oxy. Ở góc phần tư thứ nhất lấy 2 điểm phân biệt, cứ thế ở góc phần tư thứ hai, thứ ba, thứ tư ta lần lượt lấy 3, 4, 5 điểm phân biệt (các điểm không nằm trên các trục tọa độ). Trong 14 điểm đó ta lấy 2 điểm bất kỳ. Tính xác suất để đoạn thẳng nối hai điểm đó cắt hai trục tọa độ. + Bác An làm một cái cửa sổ mà phía trên là hình bán nguyệt, phía dưới là hình chữ nhật. Tìm diện tích lớn nhất của cửa sổ biết chu vi của nó là 2. + Cho bốn số nguyên dương, trong đó ba số đầu lập thành một cấp số cộng, ba số hạng sau thành lập cấp số nhân. Biết rằng tổng của số hạng đầu và số hạng cuối là 37, tổng của hai số hạng giữa là 36. Tìm số hạng thứ tư.
Đề khảo sát lần 1 Toán 11 năm 2023 - 2024 trường THPT Ngô Thì Nhậm - Ninh Bình
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi khảo sát chất lượng lần 1 môn Toán 11 năm học 2023 – 2024 trường THPT Ngô Thì Nhậm, tỉnh Ninh Bình; đề thi có đáp án trắc nghiệm mã đề 058. Trích dẫn Đề khảo sát lần 1 Toán 11 năm 2023 – 2024 trường THPT Ngô Thì Nhậm – Ninh Bình : + Nhiệt độ ngoài trời của một thành phố vào các thời điểm khác nhau trong ngày có thể được mô phỏng bởi công thức: 10 h t 28 2cos t π với h tính bằng độ C và t là thời gian trong ngày tính bằng giờ. Gọi a giờ là thời gian của một thành phố trên có nhiệt độ ngoài trời thấp nhất trong ngày. Khi đó a giờ nằm trong khoảng thời gian nào trong các khoảng thời gian sau đây: A. 2 giờ 31 phút đến 4 giờ. B. 4 giờ 30 phút đến 6 giờ. C. 1 giờ đến 2 giờ 30 phút. D. 22 giờ đến 23 giờ 40 phút. + Trên một bàn cờ có nhiều ô vuông, người ta đặt 7 hạt dẻ vào ô đầu tiên, sau đó đặt tiếp vào ô thứ hai số hạt nhiều hơn ô thứ nhất là 5, tiếp tục đặt vào ô thứ ba số hạt nhiều hơn ô thứ hai là 5 và cứ thế tiếp tục đến ô thứ n. Biết rằng đặt hết số ô trên bàn cờ người ta phải sử dụng 25450 hạt. Hỏi bàn cờ đó có bao nhiêu ô vuông? + Tìm khẳng định ĐÚNG trong các khẳng định sau: A. Qua hai điểm phân biệt có duy nhất một mặt phẳng. B. Qua ba điểm phân biệt bất kì có duy nhất một mặt phẳng. C. Qua bốn điểm phân biệt bất kì có duy nhất một mặt phẳng. D. Qua ba điểm phân biệt không thẳng hàng có duy nhất một mặt phẳng.