Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh THPT môn Toán năm 2021 2022 sở GD ĐT Quảng Ngãi

Nội dung Đề tuyển sinh THPT môn Toán năm 2021 2022 sở GD ĐT Quảng Ngãi Bản PDF - Nội dung bài viết Đề tuyển sinh THPT môn Toán năm 2021 - 2022 sở GD ĐT Quảng Ngãi Đề tuyển sinh THPT môn Toán năm 2021 - 2022 sở GD ĐT Quảng Ngãi Cảm ơn quý thầy cô và các em học sinh đã quan tâm đến đề tuyển sinh lớp 10 THPT môn Toán năm học 2021 - 2022 của sở GD&ĐT Quảng Ngãi. Đề thi sẽ được tổ chức vào thứ Sáu ngày 04 tháng 06 năm 2021. Dưới đây là một số câu hỏi mẫu trích từ đề thi: + Cho phương trình (ẩn x): x^2 - 2(m + 2)x + m^2 + 7 = 0. Hãy tìm giá trị của m để phương trình có 2 nghiệm phân biệt và tính tổng bình phương của hai nghiệm đó. + Một người đi xe đạp từ A đến B trên đoạn đường gồm đoạn lên dốc, đoạn bằng phẳng và đoạn xuống dốc. Hãy tính vận tốc lúc lên dốc và lúc xuống dốc biết rằng tổng thời gian di chuyển là 130 phút. + Trong một đường tròn có tâm là O và bán kính là R, điểm S nằm bên ngoài đường tròn. Chứng minh rằng 4 điểm S, O, A, B cùng thuộc một đường tròn và tính độ dài đoạn thẳng AB khi d = 2R. Những câu hỏi này không chỉ giúp bạn ôn tập kiến thức mà còn giúp bạn rèn luyện kỹ năng giải quyết vấn đề và tư duy logic. Chúc quý thí sinh đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Bình Dương
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán sở GD và ĐT Bình Dương Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017-2018 môn Toán sở GD và ĐT Bình Dương Đề thi tuyển sinh THPT chuyên năm học 2017-2018 môn Toán sở GD và ĐT Bình Dương Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017-2018 môn Toán sở GD và ĐT Bình Dương bao gồm 4 bài toán tự luận. Trong đề thi có một số bài toán thú vị như sau: 1. Cho tam giác ABC vuông tại A (AB < AC) ngoại tiếp đường tròn tâm O. Gọi D, E, F lần lượt là tiếp điểm của (O) với các cạnh AB, AC, BC, I là giao điểm của BO với EF, M là điểm di động trên đoạn CE. a. Tính số đo góc BIF. b. Gọi H là giao điểm của BM và EF. Chứng minh rằng nếu AM = AB thì tứ giác ABHI là tứ giác nội tiếp. c. Gọi N là giao điểm của BM với cung nhỏ EF của (O), P và Q lần lượt là hình chiếu vuông góc của N lên các đường thẳng DE, DF. Xác định vị trí của điểm M để độ dài PQ là lớn nhất. Đây là một trong những đề thi tuyển sinh khó, đòi hỏi học sinh phải nắm vững kiến thức và có khả năng tự tư duy, giải quyết vấn đề một cách logic. Hy vọng học sinh sẽ có kết quả tốt khi tham gia vào bài thi này.
Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán trường chuyên Lê Quý Đôn Bình Định (Chuyên Toán)
Nội dung Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán trường chuyên Lê Quý Đôn Bình Định (Chuyên Toán) Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán trường chuyên Lê Quý Đôn Bình Định (Chuyên Toán) Đề thi tuyển sinh THPT chuyên năm học 2017 2018 môn Toán trường chuyên Lê Quý Đôn Bình Định (Chuyên Toán) Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán của trường chuyên Lê Quý Đôn ở Bình Định (chuyên Toán) được thiết kế với 5 bài toán tự luận, đi kèm lời giải chi tiết. Một trong những bài toán trong đề bao gồm các phần sau: Cho một đường tròn (T) có tâm O và đường kính AB. Trên tiếp tuyến tại A, ta lấy một điểm P khác A và điểm K thuộc đoạn OB (K khác O và B). Đường thẳng PK cắt đường tròn (T) tại C và D (trong đó C nằm giữa P và D), H là trung điểm của đoạn thẳng CD. a) Chứng minh rằng tứ giác AOHP nội tiếp được đường tròn. b) Vẽ DI song song với PO, với I thuộc AB, chứng minh: góc PDI bằng góc BAH. c) Chứng minh rằng PA^2 = PC.PD. d) BC cắt OP tại J, chứng minh rằng AJ song song với DB. Đề thi này đòi hỏi học sinh phải áp dụng kiến thức về đường tròn và hình học không gian để giải quyết các bài toán phức tạp. Qua đó, giúp học sinh phát triển tư duy logic, khả năng suy luận và giải quyết vấn đề một cách logic và hiệu quả.
Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên Hùng Vương Phú Thọ (Chuyên Toán)
Nội dung Đề thi tuyển sinh năm học 2017 2018 môn Toán trường THPT chuyên Hùng Vương Phú Thọ (Chuyên Toán) Bản PDF - Nội dung bài viết Đề thi tuyển sinh Chuyên Toán năm học 2017 – 2018 trường THPT chuyên Hùng Vương Phú Thọ Đề thi tuyển sinh Chuyên Toán năm học 2017 – 2018 trường THPT chuyên Hùng Vương Phú Thọ Đề thi tuyển sinh lớp 10 năm học 2017 – 2018 môn Toán trường THPT chuyên Hùng Vương – Phú Thọ (Dành cho thí sinh thi chuyên Toán) bao gồm 5 bài toán tự luận. Dưới đây là một số bài toán trong đề: Tìm các số nguyên m sao cho m^2 + 12 là số chính phương. Chứng minh rằng trong 11 số nguyên tố phân biệt, lớn hơn 2 bất kỳ luôn chọn được hai số a, b sao cho a^2 – b^2 chia hết cho 60. Cho tam giác ABC cân với góc BAC = 120 độ, nội tiếp đường tròn (O). Gọi D là giao điểm của đường thẳng AC với tiếp tuyến của (O) tại B; E là giao điểm của đường thẳng BO với đường tròn (O) ( E khác B); F, I lần lượt là giao điểm của DO với AB, BC; M, N lần lượt là trung điểm của AB, BC. a) Chứng minh rằng tứ giác ADBN nội tiếp. b) Chứng minh rằng F, N, E thẳng hàng. c) Chứng minh rằng các đường thẳng MI, BO, FN đồng quy.
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Hà Nội (Chuyên Tin)
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Hà Nội (Chuyên Tin) Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Hà Nội (Chuyên Tin) Đề thi tuyển sinh THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Hà Nội (Chuyên Tin) Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Hà Nội (Chuyên Tin) là bài thi quan trọng để học sinh thể hiện kiến thức và khả năng giải quyết vấn đề của mình. Đề thi gồm 5 bài toán tự luận, được kèm theo lời giải chi tiết, giúp học sinh hiểu rõ cách giải các bài toán. Bài thi này không chỉ đánh giá kiến thức của học sinh mà còn đề cao khả năng tư duy logic, sáng tạo và khả năng xử lý vấn đề. Việc giải quyết thành công đề thi này không chỉ ảnh hưởng đến kết quả học tập mà còn mở ra cơ hội cho học sinh theo đuổi những ý tưởng và nghề nghiệp sau này. Đề thi này cũng là cơ hội để học sinh thử thách bản thân, nâng cao trình độ và tự tin trong việc giải quyết các vấn đề phức tạp. Hy vọng rằng các thí sinh sẽ tự tin và thành công trong kỳ thi sắp tới.