Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu tự học Toán 8 - Nguyễn Chín Em

Trong giai đoạn học sinh lớp 8 buộc phải nghỉ học kéo dài do diễn biến phức tạp của dịch bệnh Covid-19, thì việc tự học tập tại nhà là điều rất cần thiết, để đảm bảo mạch kiến thức không bị gián đoạn. Để hỗ trợ các em trong quá trình tự học môn Toán lớp 8 tại nhà, THCS. chia sẻ đến các em tài liệu tự học Toán 8 do thầy giáo Th.s Nguyễn Chín Em sưu tầm và biên soạn; tài liệu gồm có 483 trang, bao gồm đầy đủ kiến thức, phân dạng toán và hướng dẫn giải bài tập Đại số 8 và Hình học 8. Khái quát nội dung tài liệu tự học Toán 8 – Nguyễn Chín Em: PHẦN I . ĐẠI SỐ. CHƯƠNG 1 . PHÉP NHÂN VÀ PHÉP CHIA ĐA THỨC. 1 Nhân đa thức. 2 Các hằng đẳng thức đáng nhớ. 3 Phân tích đa thức thành nhân tử. 4 Chia đa thức. CHƯƠNG 2 . PHÂN THỨC ĐẠI SỐ. 1 Tính chất cơ bản của phân thức, rút gọn phân thức. 2 Các phép tính về phân thức. 3 Một số phương pháp phân tích đa thức thành nhân tử. + Phương pháp tách một hạng tử thành nhiều hạng tử. + Phương pháp thêm và bớt cùng một hạng tử. + Phương pháp hệ số bất định. + Phương pháp xét giá trị riêng. 4 Tính chia hết của số nguyên. + Chứng minh quan hệ chia hết. + Tìm số dư. + Tìm điều kiện để chia hết. 5 Tính chia hết đối với đa thức. + Tìm dư của phép chia mà không thực hiện phép chia. + Sơ đồ Hoóc-ne. + Chứng minh một đa thức chia hết cho một đa thức khác. CHƯƠNG 3 . PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN. 1 Khái niệm về phương trình. Phương trình bậc nhất. 2 Phương trình tích. 3 Phương trình chứa ẩn ở mẫu thức. 4 Giải bài toán bằng cách lập phương trình. CHƯƠNG 4 . BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN. 1 Liên hệ giữa thứ tự và phép cộng, phép nhân. 2 Bất phương trình bậc nhất một ẩn. 3 Phương trình chứa ẩn trong dấu giá trị tuyệt đối. 4 Bất phương trình chứa ẩn trong dấu trị tuyệt đối. 5 Bất phương trình tích. Bất phương trình thương. 6 Chuyên đề chứng minh bất đẳng thức180 + Các tính chất của bất đẳng thức. + Các hằng bất đẳng thức. + Các phương pháp chứng minh bất đẳng thức. + Bất đẳng thức với số tự nhiên. + Vài điểm chú ý khi chứng minh bất đẳng thức. + Áp dụng chứng minh bất đẳng thức vào giải phương trình. 7 Tìm giá trị nhỏ nhất, giá trị lớn nhất của một biểu thức. + Giá trị nhỏ nhất, giá trị lớn nhất của một biểu thức. + Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức chứa một biến. + Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức có quan hệ ràng buộc giữa các biến. + Các chú ý khi tìm giá trị nhỏ nhất, giá trị lớn nhất của một biểu thức. + Bài toán cực trị với số tự nhiên. [ads] PHẦN II . HÌNH HỌC. CHƯƠNG 1 . TỨ GIÁC. 1 Tứ giác. 2 Hình thang. 3 Dựng hình bằng thước và compa. 4 Đối xứng trục. 5 Hình bình hành. 6 Đối xứng tâm. 7 Hình chữ nhật. 8 Hình thoi. 9 Hình vuông. CHƯƠNG 2 . ĐA GIÁC. DIỆN TÍCH ĐA GIÁC. 1 Đa giác. 2 Diện tích của đa giác. CHƯƠNG 3 . CHUYÊN ĐỀ. 1 Tìm tập hợp điểm. + Hai tập hợp bằng nhau. + Các tập hợp điểm đã học. + Thứ tự nghiên cứu và trình bày lời giải bài toán tìm tập hợp điểm. + Phân chia các trường hợp trong bài toán tìm tập hợp điểm. 2 Sử dụng công thức diện tích để thiết lập quan hệ về độ dài của các đoạn thẳng. CHƯƠNG 4 . TAM GIÁC ĐỒNG DẠNG. 1 Định lý Ta-lét. 2 Định lý Ta-lét đảo. 3 Tính chất đường phân giác của tam giác. 4 Các trường hợp đồng dạng của tam giác. + Dạng 1. Trường hợp cạnh – cạnh – cạnh. + Dạng 2. Trường hợp cạnh – góc – cạnh. + Dạng 3. Trường hợp góc – góc. + Dạng 4. Phối hợp các trường hợp cạnh – góc – cạnh và góc – góc. + Dạng 5. Dựng hình. 5 Các trường hợp đồng dạng của tam giác vuông. + Hai tam giác vuông đồng dạng. + Tỉ số các đường cao, tỉ số diện tích của hai tam giác đồng dạng. + Ứng dụng thực tế của tam giác đồng dạng. CHƯƠNG 5 . HÌNH LĂNG TRỤ ĐỨNG. HÌNH CHÓP ĐỀU. 1 Hình hộp chữ nhật. Dạng 1. Hình hộp chữ nhật. Dạng 2. Diện tích. Dạng 3. Thể tích. Dạng 4. Các dạng khác. CHƯƠNG 6 . ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONGKHÔNG GIAN. QUAN HỆ SONG SONG. 1 Hình lăng trụ đứng. 2 Hình chóp đều. Hình chóp cụt đều. 3 Toán cực trị hình học. + Bài toán cực trị. + Các bất đẳng thức thường dùng để giải toán cực trị. + Các chú ý khi giải toán cực trị.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề phép nhân các phân thức đại số
Nội dung Chuyên đề phép nhân các phân thức đại số Bản PDF - Nội dung bài viết Chuyên đề phép nhân các phân thức đại số Chuyên đề phép nhân các phân thức đại số Tài liệu này bao gồm 11 trang, tập trung vào việc giải thích lý thuyết quan trọng cần hiểu, cung cấp các dạng toán và hướng dẫn cách giải, đồng thời chọn lọc bài tập từ dễ đến khó trong chuyên đề phép nhân các phân thức đại số. Tài liệu cung cấp đáp án và lời giải chi tiết, giúp học sinh tiếp cận và hiểu rõ hơn về chương trình Đại số 8 chương 2: Phân thức đại số. I. Tóm tắt lý thuyết: Trong phần này, tóm tắt các lý thuyết quan trọng như quy tắc nhân phân thức để áp dụng vào việc giải các bài toán. II. Bài tập và các dạng toán: Dạng 1: Sử dụng quy tắc nhân để thực hiện phép tính, vận dụng quy tắc đã học vào bài toán cụ thể. Dạng 2: Tính toán bằng cách kết hợp các quy tắc đã học như quy tắc cộng, trừ và nhân. Có thể áp dụng quy tắc nhân đối với nhiều phân thức, ưu tiên tính toán biểu thức trong dấu ngoặc trước (nếu có). Tài liệu này được thiết kế để giúp học sinh hiểu và áp dụng phép nhân các phân thức đại số một cách linh hoạt và chính xác trong quá trình học tập.
Chuyên đề phép trừ các phân thức đại số
Nội dung Chuyên đề phép trừ các phân thức đại số Bản PDF - Nội dung bài viết Chuyên đề phép trừ các phân thức đại số Chuyên đề phép trừ các phân thức đại số Chuyên đề này bao gồm 21 trang tài liệu, tập trung vào việc truyền đạt lý thuyết cơ bản về phân dạng và cách giải các dạng toán liên quan đến phép trừ các phân thức đại số. Tài liệu cũng tuyển chọn các bài tập từ dễ đến khó, giúp học sinh nắm vững kiến thức và kỹ năng trong việc giải các bài toán thuộc chương trình Đại số 8, chương 2: Phân thức đại số. I. Tóm tắt lý thuyết: Phân thức đối. Quy tắc trừ hai phân thức đại số. II. Bài tập và các dạng toán: Dưới đây là một số dạng toán thường gặp: Dạng 1: Thực hiện phép tính trừ với các phân thức đại số. Áp dụng quy tắc trừ các phân thức đại số. Thực hiện phép cộng các phân thức đại số. Dạng 2: Tìm phân thức thỏa mãn yêu cầu. Đưa phân thức cần tìm về dạng riêng. Sử dụng quy tắc cộng, trừ phân thức để tìm ra đáp án. Dạng 3: Giải toán sử dụng phép trừ các phân thức đại số. Thiết lập biểu thức theo yêu cầu của đề bài. Sử dụng quy tắc cộng, trừ phân thức để giải toán. III. Phiếu bài tập tự luyện: Những dạng bài tập tự luyện sau sẽ giúp bạn rèn luyện kỹ năng thêm: Tìm phân thức đối của một phân thức. Trừ các phân thức cùng mẫu thức. Trừ các phân thức không cùng mẫu thức. Chứng minh đẳng thức. Biểu diễn đại lượng thông qua biến.
Chuyên đề phép cộng các phân thức đại số
Nội dung Chuyên đề phép cộng các phân thức đại số Bản PDF - Nội dung bài viết Chuyên đề phép cộng các phân thức đại số Chuyên đề phép cộng các phân thức đại số Tài liệu này bao gồm 14 trang chi tiết về cách thức cộng các phân thức đại số. Nội dung tập trung vào việc tóm tắt lý thuyết quan trọng, phân dạng và hướng dẫn giải các dạng toán liên quan đến phép cộng phân thức đại số. Bên cạnh đó, tài liệu cũng cung cấp một loạt các bài tập từ cơ bản đến nâng cao để học sinh thực hành, kèm theo đáp án và lời giải chi tiết. Phần tóm tắt lý thuyết trong tài liệu giải thích hai quy tắc quan trọng khi cộng các phân thức: cộng hai phân thức cùng mẫu thức và cộng hai phân thức khác mẫu thức. Bằng cách giải thích rõ ràng và dễ hiểu, học sinh có thể nắm vững cách thức thực hiện các phép tính này. Bên cạnh đó, tài liệu cũng trình bày các dạng toán phổ biến liên quan đến phép cộng phân thức. Từ việc cộng xác phân thức thông thường đến tính giá trị biểu thức tổng các phân thức đại số, học sinh sẽ được hướng dẫn cụ thể từng bước để giải quyết các loại bài tập này. Cuối cùng, tài liệu cũng cung cấp các bài tập giải toán đố thú vị để học sinh áp dụng kiến thức về phép cộng phân thức vào thực tế. Điều này giúp học sinh hiểu rõ hơn về ứng dụng của phân thức đại số trong các tình huống thực tế.
Chuyên đề quy đồng mẫu thức nhiều phân thức
Nội dung Chuyên đề quy đồng mẫu thức nhiều phân thức Bản PDF - Nội dung bài viết Chuyên đề quy đồng mẫu thức nhiều phân thức Chuyên đề quy đồng mẫu thức nhiều phân thức Tài liệu này bao gồm 14 trang, nội dung tập trung vào lý thuyết cần thiết, các phần dạng toán và hướng dẫn giải, cũng như tuyển chọn bài tập từ cơ bản đến nâng cao về chuyên đề quy đồng mẫu thức nhiều phân thức. Bạn sẽ được cung cấp đáp án và lời giải chi tiết, giúp hỗ trợ trong quá trình học tập môn Đại số 8, chương 2: Phân thức đại số. I. TÓM TẮT LÝ THUYẾT Để quy đồng mẫu thức nhiều phân thức, bạn cần thực hiện các bước sau: + Bước 1: Phân tích mẫu thức thành nhân tử để tìm mẫu thức chung. + Bước 2: Tìm nhân tử phụ của mỗi mẫu thức. + Bước 3: Nhân cả tử và mẫu của từng phân thức với nhân tử phụ tương ứng. II. BÀI TẬP VÀ CÁC DẠNG TOÁN + Dạng 1: Tìm mẫu thức chung của các phân thức. + Dạng 2: Quy đồng các mẫu thức. Bằng cách áp dụng các bước và dạng toán đã hướng dẫn, bạn sẽ dễ dàng làm quen với chuyên đề này và nâng cao kỹ năng giải toán của mình. Hy vọng tài liệu sẽ giúp bạn hiểu rõ hơn về quy đồng mẫu thức nhiều phân thức và thành công trong việc học tập.