Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu tự học Toán 8 - Nguyễn Chín Em

Trong giai đoạn học sinh lớp 8 buộc phải nghỉ học kéo dài do diễn biến phức tạp của dịch bệnh Covid-19, thì việc tự học tập tại nhà là điều rất cần thiết, để đảm bảo mạch kiến thức không bị gián đoạn. Để hỗ trợ các em trong quá trình tự học môn Toán lớp 8 tại nhà, THCS. chia sẻ đến các em tài liệu tự học Toán 8 do thầy giáo Th.s Nguyễn Chín Em sưu tầm và biên soạn; tài liệu gồm có 483 trang, bao gồm đầy đủ kiến thức, phân dạng toán và hướng dẫn giải bài tập Đại số 8 và Hình học 8. Khái quát nội dung tài liệu tự học Toán 8 – Nguyễn Chín Em: PHẦN I . ĐẠI SỐ. CHƯƠNG 1 . PHÉP NHÂN VÀ PHÉP CHIA ĐA THỨC. 1 Nhân đa thức. 2 Các hằng đẳng thức đáng nhớ. 3 Phân tích đa thức thành nhân tử. 4 Chia đa thức. CHƯƠNG 2 . PHÂN THỨC ĐẠI SỐ. 1 Tính chất cơ bản của phân thức, rút gọn phân thức. 2 Các phép tính về phân thức. 3 Một số phương pháp phân tích đa thức thành nhân tử. + Phương pháp tách một hạng tử thành nhiều hạng tử. + Phương pháp thêm và bớt cùng một hạng tử. + Phương pháp hệ số bất định. + Phương pháp xét giá trị riêng. 4 Tính chia hết của số nguyên. + Chứng minh quan hệ chia hết. + Tìm số dư. + Tìm điều kiện để chia hết. 5 Tính chia hết đối với đa thức. + Tìm dư của phép chia mà không thực hiện phép chia. + Sơ đồ Hoóc-ne. + Chứng minh một đa thức chia hết cho một đa thức khác. CHƯƠNG 3 . PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN. 1 Khái niệm về phương trình. Phương trình bậc nhất. 2 Phương trình tích. 3 Phương trình chứa ẩn ở mẫu thức. 4 Giải bài toán bằng cách lập phương trình. CHƯƠNG 4 . BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN. 1 Liên hệ giữa thứ tự và phép cộng, phép nhân. 2 Bất phương trình bậc nhất một ẩn. 3 Phương trình chứa ẩn trong dấu giá trị tuyệt đối. 4 Bất phương trình chứa ẩn trong dấu trị tuyệt đối. 5 Bất phương trình tích. Bất phương trình thương. 6 Chuyên đề chứng minh bất đẳng thức180 + Các tính chất của bất đẳng thức. + Các hằng bất đẳng thức. + Các phương pháp chứng minh bất đẳng thức. + Bất đẳng thức với số tự nhiên. + Vài điểm chú ý khi chứng minh bất đẳng thức. + Áp dụng chứng minh bất đẳng thức vào giải phương trình. 7 Tìm giá trị nhỏ nhất, giá trị lớn nhất của một biểu thức. + Giá trị nhỏ nhất, giá trị lớn nhất của một biểu thức. + Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức chứa một biến. + Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức có quan hệ ràng buộc giữa các biến. + Các chú ý khi tìm giá trị nhỏ nhất, giá trị lớn nhất của một biểu thức. + Bài toán cực trị với số tự nhiên. [ads] PHẦN II . HÌNH HỌC. CHƯƠNG 1 . TỨ GIÁC. 1 Tứ giác. 2 Hình thang. 3 Dựng hình bằng thước và compa. 4 Đối xứng trục. 5 Hình bình hành. 6 Đối xứng tâm. 7 Hình chữ nhật. 8 Hình thoi. 9 Hình vuông. CHƯƠNG 2 . ĐA GIÁC. DIỆN TÍCH ĐA GIÁC. 1 Đa giác. 2 Diện tích của đa giác. CHƯƠNG 3 . CHUYÊN ĐỀ. 1 Tìm tập hợp điểm. + Hai tập hợp bằng nhau. + Các tập hợp điểm đã học. + Thứ tự nghiên cứu và trình bày lời giải bài toán tìm tập hợp điểm. + Phân chia các trường hợp trong bài toán tìm tập hợp điểm. 2 Sử dụng công thức diện tích để thiết lập quan hệ về độ dài của các đoạn thẳng. CHƯƠNG 4 . TAM GIÁC ĐỒNG DẠNG. 1 Định lý Ta-lét. 2 Định lý Ta-lét đảo. 3 Tính chất đường phân giác của tam giác. 4 Các trường hợp đồng dạng của tam giác. + Dạng 1. Trường hợp cạnh – cạnh – cạnh. + Dạng 2. Trường hợp cạnh – góc – cạnh. + Dạng 3. Trường hợp góc – góc. + Dạng 4. Phối hợp các trường hợp cạnh – góc – cạnh và góc – góc. + Dạng 5. Dựng hình. 5 Các trường hợp đồng dạng của tam giác vuông. + Hai tam giác vuông đồng dạng. + Tỉ số các đường cao, tỉ số diện tích của hai tam giác đồng dạng. + Ứng dụng thực tế của tam giác đồng dạng. CHƯƠNG 5 . HÌNH LĂNG TRỤ ĐỨNG. HÌNH CHÓP ĐỀU. 1 Hình hộp chữ nhật. Dạng 1. Hình hộp chữ nhật. Dạng 2. Diện tích. Dạng 3. Thể tích. Dạng 4. Các dạng khác. CHƯƠNG 6 . ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONGKHÔNG GIAN. QUAN HỆ SONG SONG. 1 Hình lăng trụ đứng. 2 Hình chóp đều. Hình chóp cụt đều. 3 Toán cực trị hình học. + Bài toán cực trị. + Các bất đẳng thức thường dùng để giải toán cực trị. + Các chú ý khi giải toán cực trị.

Nguồn: toanmath.com

Đọc Sách

Một số chuyên đề bồi dưỡng học sinh giỏi Toán 8
Tài liệu gồm 251 trang, tuyển tập một số chuyên đề bồi dưỡng học sinh giỏi Toán 8, hỗ trợ học sinh trong quá trình ôn tập chuẩn bị cho kỳ thi chọn học sinh giỏi Toán 8 các cấp (cấp trường, cấp quận / huyện, cấp thành phố / tỉnh …). CHỦ ĐỀ 1 . HẰNG ĐẲNG THỨC. + Các hằng đẳng thức cơ bản. + Các hằng đẳng thức mở rộng hay sử dụng. CHUYÊN ĐỀ 2 . PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ. + Phương pháp tách hạng tử. + Phương pháp nhóm hạng tử. + Phương pháp dùng hằng đẳng thức. + Phương pháp thêm, bớt cùng một hạng tử. + Phương pháp đổi biến. + Phương pháp hệ số bất định. + Đối với đa thức đa ẩn. + Các ứng dụng của phân tích đa thức thành nhân tử. CHUYÊN ĐỀ 3 . GIÁ TRỊ LỚN NHẤT, GIÁ TRỊ NHỎ NHẤT CỦA BIỂU THỨC. + Tìm GTLN – GTNN của tam thức bậc hai ax2 + bx + c. + Tìm GTLN – GTNN của đa thức có bậc cao hơn 2. + Đa thức có từ hai biến trở lên. + Tìm GTLN – GTNN của biểu thức có quan hệ ràng buộc giữa các biến. + Phương pháp đổi biến số. + Sử dụng bất đẳng thức có chứa dấu giá trị tuyệt đối. + Dạng phân thức. CHUYÊN ĐỀ 4 . PHƯƠNG TRÌNH ĐẠI SỐ. + Phương trình bậc nhất một ẩn. + Bất phương trình bậc nhất một ẩn. + Phương trình bậc cao. CHUYÊN ĐỀ 5 . ĐỒNG NHẤT THỨC. + Các bài toán về biểu thức nguyên. + Các dạng toán về phân thức đại số. + Rút gọn biểu thức. + Biểu thức có tính quy luật. CHUYÊN ĐỀ 6 . BẤT ĐẲNG THỨC. + Dùng định nghĩa và các phép biến đổi tương đương. + Dùng các phép biến đổi tương đương. + Bất đẳng thức dạng nghịch đảo (Cô-si cộng mẫu). + Dùng các bất đẳng thức phụ. + Phương pháp phản chứng. CHUYÊN ĐỀ 7 . ĐA THỨC. + Tính chia hết của đa thức. + Phần dư trong phép chia đa thức. + Dùng phương pháp xét giá trị riêng để tìm hệ số của một đa thức. + Đặt phép chia để tìm hệ số. CHUYÊN ĐỀ 8 . HÌNH HỌC. + Hình thang, hình thang cân. + Đường trung bình của tam giác, hình thang. + Đối xứng trục, đối xứng tâm. + Hình bình hành. + Hình chữ nhật. + Hình thoi. + Hình vuông. + Các bài tập tổng hợp về tứ giác đặc biệt. Xem thêm : Đề thi HSG Toán 8
Hướng dẫn ôn tập học kì 2 Toán 8 năm 2020 - 2021 trường Vinschool - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 8 đề cương hướng dẫn ôn tập học kì 2 Toán 8 năm học 2020 – 2021 trường Vinschool – Hà Nội, nhằm giúp các em rèn luyện, chuẩn bị cho kỳ kiểm tra khảo sát chất lượng môn Toán 8 giai đoạn cuối học kỳ 2 năm học 2020 – 2021. I. KIẾN THỨC TRỌNG TÂM Phương trình: – Phương trình tương đương. – Định nghĩa phương trình bậc nhất một ẩn. – Hai quy tắc biến đổi phương trình. – Cách giải phương trình bậc nhất một ẩn, phương trình đưa được về dạng bậc nhất một ẩn, phương trình tích, phương trình chứa ẩn ở mẫu. – Cách giải phương trình chứa dấu giá trị tuyệt đối. Bất phương trình: – Tập nghiệm của bất phương trình. – Bất phương trình tương đương. – Định nghĩa bất phương trình bậc nhất một ẩn. – Hai quy tắc biến đổi bất phương trình. – Cách giải bất phương trình bậc nhất một ẩn, bất phương trình đưa được về dạng bậc nhất một ẩn. Giải bài toán bằng cách lập phương trình: – Các bước giải bài toán bằng cách lập phương trình. – Các dạng toán giải bằng cách lập phương trình: chuyển động, năng suất, số và chữ số, phần trăm, hình học. Bất đẳng thức: – Mối liên hệ giữa thứ tự và phép tính (phép cộng, phép nhân). – Chứng minh bất đẳng thức. – Tìm giá trị lớn nhất, giá trị nhỏ nhất. Định lí Ta-let. Tính chất đường phân giác: – Định lí Ta-lét, định lí đảo và hệ quả của định lí Ta-lét. – Tính chất đường phân giác của tam giác. Tam giác đồng dạng: – Khái niệm hai tam giác đồng dạng. – Các trường hợp đồng dạng của tam giác, tam giác vuông. Hình học không gian: – Khái niệm hình hộp chữ nhật, hình lập phương, hình lăng trụ đứng. – Các công thức tính diện tích xung quanh, diện tích toàn phần, thể tích của hình hộp chữ nhật, hình lập phương, hình lăng trụ đứng. II. BÀI TẬP MINH HỌA
Chuyên đề diện tích xung quanh và thể tích của hình chóp đều
Tài liệu gồm 12 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích xung quanh và thể tích của hình chóp đều, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 4: Hình lăng trụ đứng, hình chóp đều. A. BÀI GIẢNG CỦNG CỐ KIẾN THỨC NỀN 1. Công thức tính diện tích, thể tích hình chóp đều. 2. Công thức tính diện tích, thể tích hình chóp cụt đều. B. VÍ DỤ MINH HỌA C. PHIẾU BÀI TỰ LUYỆN 1. Dạng toán đại lượng hình học. 2. Dạng toán chứng minh.
Chuyên đề hình chóp đều, hình chóp cụt đều
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề hình chóp đều, hình chóp cụt đều, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 4: Hình lăng trụ đứng, hình chóp đều. A. Bài giảng củng cố kiến thức nền 1. Hình chóp: Hình chóp là hình có mặt đáy là một đa giác và các mặt bên là các tam giác có chung đỉnh. 2. Hình chóp đều: Hình chóp đều là hình chóp có đáy là một đa giác đều, các mặt bên là tam giác cân bằng nhau có chung đỉnh. 3. Hình chóp cụt đều: Cắt một hình chóp đều bằng một mặt phẳng song song với đáy, phần hình chóp nằm giữa mặt phẳng đó và mặt phẳng đáy là một hình chóp cụt đều. B. Phương pháp giải toán C. Phiếu bài tự luyện Dạng 1: Biến đổi công thức tính các đại lượng. Dạng 2: Những bài toán về tự luận.