Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi vào 10 môn Toán (chung) năm 2020 2021 trường chuyên Lê Quý Đôn Lai Châu

Nội dung Đề thi vào 10 môn Toán (chung) năm 2020 2021 trường chuyên Lê Quý Đôn Lai Châu Bản PDF Đề thi vào lớp 10 môn Toán (chung) năm học 2020 - 2021 của trường chuyên Lê Quý Đôn - Lai Châu là một đề thi khá thú vị và đầy thách thức. Đề thi gồm 6 bài toán dạng tự luận, đòi hỏi học sinh phải có kiến thức sâu và khả năng suy luận logic tốt. Thời gian làm bài là 150 phút, cho phép học sinh có đủ thời gian để làm bài một cách cẩn thận và chính xác.

Trong đề thi có những câu hỏi khá phức tạp như việc chứng minh tứ giác nội tiếp, tính toán vận tốc ban đầu của ô tô, hoặc tìm giá trị lớn nhất của biểu thức sinh học. Những bài toán như vậy không chỉ đòi hỏi kiến thức vững chắc mà còn cần có sự tỉ mỉ và khéo léo trong việc suy luận và tính toán.

Việc giải quyết đề thi này không chỉ là việc thử thách kiến thức và khả năng của học sinh mà còn giúp họ rèn luyện kỹ năng tư duy logic và khả năng xử lý vấn đề. Với một đề thi như vậy, học sinh sẽ có cơ hội thể hiện khả năng và kiến thức của mình một cách toàn diện và nâng cao kỹ năng tự học và tự giải quyết vấn đề.

Cuối cùng, việc học sinh giải quyết thành công đề thi này không chỉ là để đạt điểm cao mà còn là để phát triển bản thân và chuẩn bị cho những thách thức trong tương lai. Chúc các em học sinh may mắn và thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 không chuyên môn Toán năm 2022 - 2023 sở GDĐT Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT không chuyên môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Nam Định; đề thi gồm 08 câu trắc nghiệm (02 điểm) và 05 câu tự luận (08 điểm), thời gian học sinh làm bài thi là 120 phút (không kể thời gian phát đề). Trích dẫn đề tuyển sinh lớp 10 không chuyên môn Toán năm 2022 – 2023 sở GD&ĐT Nam Định : + Cho tam giác ABC vuông cân tại A có AB = AC = 4cm. Kẻ đường cao AH của tam giác ABC và vẽ cung tròn (A;AH) cắt AB, AC lần lượt tại D, E (hình vẽ bên). Tính diện tích phần tô đậm trong hình vẽ bên. + Cho đường tròn (O) và điểm A nằm bên ngoài đường tròn. Từ A kẻ các tiếp tuyến AM, AN với đường tròn (O) (M và N là các tiếp điểm). Một đường thẳng đi qua A cắt đường tròn (O) tại hai điểm P, Q sao cho P nằm giữa A và Q, dây cung PQ không đi qua tâm O. Gọi I là trung điểm của đoạn PQ, J là giao điểm của hai đường thẳng AQ và MN. Chứng minh rằng: a) Năm điểm A, M, O, I, N cùng nằm trên một đường tròn và JIM = JIN. b) Tam giác AMP đồng dạng với tam giác AQM và AP.AQ = AI.AJ. + Cho x, y, z là các số thực dương thay đổi. Tìm giá trị lớn nhất của biểu thức P = (x + y – z)(y + z – x)(z + x – y) – xyz.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GDĐT Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Bắc Ninh; đề thi mã đề 482 gồm 20 câu trắc nghiệm (04 điểm – 30 phút) và 04 câu tự luận (06 điểm – 06 phút); đề thi có đáp án và lời giải chi tiết (hướng dẫn được thực hiện bởi tác giả DUC PV). Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2022 – 2023 sở GD&ĐT Bắc Ninh : + Một người đi xe đạp từ A đến B cách nhau 15km. Khi từ B về A người đó tăng vận tốc thêm 3km/h. Vì vậy, thời gian về ít hơn thời gian đi là 15 phút. Tính vận tốc của người đi xe đạp khi đi từ A đến B. + Cho đường tròn (O; R) và dây MN cố định (MN < 2R). Kẻ đường kính AB vuông góc với dây MN tại E. Lấy điểm C thuộc dây MN (C khác M, N, E). Đường thẳng BC cắt đường tròn (O; R) tại điểm K (K khác B). a) Chứng minh AKCE là tứ giác nội tiếp. b) Chứng minh BM2 = BK.BC. Gọi I là giao điểm của hai đường thẳng AK và MN; D là giao điểm của hai đường thẳng AC và BI. Chứng minh C cách đều ba cạnh của 4DEK. + Chứng minh rằng nếu tất cả các cạnh của một tam giác nhỏ hơn 2 thì diện tích của tam giác đó nhỏ hơn √3.
Đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2022 - 2023 sở GDĐT Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 trường THPT chuyên môn Toán (chung) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 14 – 16/06/2022. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2022 – 2023 sở GD&ĐT Quảng Nam : + Xác định tất cả các giá trị của tham số m để phương trình x2 – 2mx + m2 + m – 3 = 0 có hai nghiệm phân biệt x1 và x2 sao cho |x1 – x2| = m. + Cho đường tròn (O) có đường kính AB. Trên đường tròn (O) lấy điểm E (khác B) sao cho tiếp tuyến của (O) tại E cắt tia AB tại điểm C. Gọi d là đường thẳng vuông góc với đường thẳng AB tại C, D là giao điểm của đường thẳng AE và đường thẳng d, F là giao điểm thứ hai của đường thẳng BD và đường tròn (O). a) Chứng minh tứ giác BCDE nội tiếp đường tròn. b) Chứng minh EF song song với đường thẳng d. c) Gọi I là giao điểm của BE và CF, H là giao điểm của EF và AB. Chứng minh BC.IF = 2IC.BH. + Cho ba số thực dương a, b, c thỏa mãn a + b + c = 2. Tìm giá trị lớn nhất của biểu thức Q.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 - 2023 sở GDĐT TP Hồ Chí Minh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Hồ Chí Minh; kỳ thi được diễn ra vào chiều Chủ Nhật ngày 12 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT TP Hồ Chí Minh : + Cho hình vuông ABCD. Trên các cạnh BC và CD lần lượt lấy các điểm M và N sao cho MAN = 45°. a) Chứng minh MN tiếp xúc với đường tròn tâm A bán kính AB. b) Kẻ MP song song với AN (P thuộc đoạn AB) và kẻ NQ song song với AM (Q thuộc đoạn AD). Chứng minh AP = AQ. + Cho tam giác ABC nhọn (AB < AC) có các đường cao AD, BE, CF cắt nhau tại H. Đường thẳng EF cắt đường thẳng BC tại I. Đường thẳng qua A vuông góc với IH tại K và cắt BC tại M. a) Chứng minh tứ giác IFKC nội tiếp b) Chứng minh M là trung điểm của BC. + Số nguyên dương n được gọi là “số tốt” nếu n + 1 và 8n + 1 đều là các số chính phương. a) Hãy chỉ ra ví dụ ba “số tốt” lần lượt có 1, 2, 3 chữ số. b) Tìm các số nguyên k thỏa mãn |k| =< 10 và 4n + k là hợp số với mọi n là “số tốt”.