Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Phan Huy Chú Hà Nội

Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Phan Huy Chú Hà Nội Bản PDF Ngày … tháng 06 năm 2020, trường THPT Phan Huy Chú, huyện Quốc Oai, thành phố Hà Nội tổ chức kỳ thi kết thúc học kỳ 2 môn Toán lớp 11 năm học 2019 – 2020. Đề thi HK2 Toán lớp 11 năm 2019 – 2020 trường THPT Phan Huy Chú – Hà Nội mã đề 132 và mã đề 149 được biên soạn theo dạng đề trắc nghiệm, đề thi gồm 05 trang với 50 câu hỏi và bài toán, thời gian làm bài thi là 90 phút, đề thi có đáp án mã đề 149, 238, 395, 406, 571, 132, 209, 357, 485, 570. Trích dẫn đề thi HK2 Toán lớp 11 năm 2019 – 2020 trường THPT Phan Huy Chú – Hà Nội : + Tìm mệnh đề đúng: A. Hình lập phương có 6 mặt là hình vuông. B. Hình chóp đều có tất cả các cạnh bằng nhau. C. Hình hộp có đáy là hình chữ nhật. D. Hình lăng trụ đều có đáy là tam giác đều. + Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = 3a, AD = DC = a. Gọi I là trung điểm của AD, biết hai mặt phẳng (SBI) và (SCI) cùng vuông góc với đáy và mặt phẳng (SBC) tạo với đáy một góc 60 độ. Tính khoảng cách từ trung điểm cạnh SD đến mặt phẳng (SBC). [ads] + Trong không gian cho các đường thẳng a, b, c và mặt phẳng (P). Mệnh đề nào sau đây sai? A. Nếu a ⊥ b, c ⊥ b và a cắt c thì b vuông góc với mặt phẳng chứa a và c. B. Nếu a ⊥ (P) và b // (P) thì a ⊥ b. C. Nếu a ⊥ b và b ⊥ c thì a // c. D. Nếu a // b và b ⊥ c thì c ⊥ a.

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Phan Đình Phùng Đắk Lắk
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Phan Đình Phùng Đắk Lắk Bản PDF Đề thi HK2 Toán lớp 11 năm 2019 – 2020 trường THPT Phan Đình Phùng – Đắk Lắk mã đề 289, đề thi gồm 03 trang với 24 câu trắc nghiệm (chiếm 6,0 điểm) và 04 câu tự luận (chiếm 4,0 điểm), thời gian làm bài 90 phút. Trích dẫn đề thi HK2 Toán lớp 11 năm 2019 – 2020 trường THPT Phan Đình Phùng – Đắk Lắk : + Cho hình chóp S.ABCD có đáy ABCD là hình vuông và SA vuông góc với (ABCD), SA = 3a, AB = a√3. a) Chứng minh rằng AD ⊥ (SAB). b) Tính góc giữa hai mặt phẳng (SBC) và (ABCD). c) Tính khoảng cách giữa SB và AC. [ads] + Cho hình chóp tam giác đều S.ABC có G là trọng tâm tam giác ABC. Đường thẳng nào dưới đây vuông góc với mặt phẳng (ABC)? + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật và SA vuông góc với mặt phẳng (ABCD) (xem hình vẽ). Mặt phẳng nào dưới đây vuông góc với đường thẳng BC? File WORD (dành cho quý thầy, cô):
Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Khánh Sơn Khánh Hòa
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Khánh Sơn Khánh Hòa Bản PDF Đề thi HK2 Toán lớp 11 năm 2019 – 2020 trường THPT Khánh Sơn – Khánh Hòa mã đề 132 gồm 03 trang, đề có dạng trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 28 câu, chiếm 7,0 điểm, phần tự luận gồm 03 câu, chiếm 3,0 điểm, thời gian làm bài 90 phút. Trích dẫn đề thi HK2 Toán lớp 11 năm 2019 – 2020 trường THPT Khánh Sơn – Khánh Hòa : + Trong các mệnh đề sau đây, mệnh đề nào ĐÚNG? A. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau. B. Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau. C. Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau. D. Hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau. + Đường thẳng a vuông góc với mặt phẳng (α) khi ? A. khi a vuông góc với hai đường thẳng nằm trong (α). B. khi a vuông góc với một đường thẳng trong (α). C. khi a song song với hai đường thẳng cắt nhau trong (α). D. khi a vuông góc với hai đường thẳng cắt nhau trong (α). [ads] + Cho hình chóp đều, chọn mệnh đề sai trong các mệnh đề sau: A. Đáy của hình chóp đều là đa giác đều. B. Chân đường cao của hình chóp đều trùng với tâm của đa giác đáy đó. C. Các mặt bên của hình chóp đều là những tam giác cân. D. Tất cả những cạnh của hình chóp đều bằng nhau. File WORD (dành cho quý thầy, cô):
Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT An Dương Vương TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT An Dương Vương TP HCM Bản PDF Nhằm giúp các em học sinh lớp 11 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 11 sắp tới, Sytu giới thiệu đến các em đề thi học kì 2 Toán lớp 11 năm học 2019 – 2020 trường THPT An Dương Vương, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán lớp 11 năm 2019 – 2020 trường THPT An Dương Vương – TP HCM : + Cho hàm số. Tìm tất cả giá trị của tham số m để phương trình y’ = 0 có hai nghiệm phân biệt. + Cho hàm số có đồ thị (C). Lập phương trình tiếp tuyến d với đồ thị (C) tại giao điểm của (C) với trục Oy. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông, cạnh 2a. H là trung điểm AB và SH = a15. Biết rằng hai mặt phẳng (SCH) và (SHD) cùng vuông góc với mặt phẳng (ABCD). a) Chứng minh: SH vuông góc (ABCD) và AD vuông góc (SAB). b) Tính góc giữa đường thẳng SC và mặt phẳng (ABCD). c) Tính góc giữa mặt phẳng (SCD) và mặt phẳng (ABCD). d) Gọi I là trung điểm cạnh SD. Tính khoảng cách giữa IC và AD.
Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường TH Thực hành Sài Gòn TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường TH Thực hành Sài Gòn TP HCM Bản PDF Nhằm giúp các em học sinh lớp 11 ôn tập, chuẩn bị cho đợt kiểm tra cuối học kỳ 2 môn Toán lớp 11 sắp tới, Sytu giới thiệu đến các em đề thi học kì 2 Toán lớp 11 năm học 2019 – 2020 trường TH Thực hành Sài Gòn, thành phố Hồ Chí Minh, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học kì 2 Toán lớp 11 năm 2019 – 2020 trường TH Thực hành Sài Gòn – TP HCM : + Cho đường cong (C) có phương trình. Viết phương trình tiếp tuyến của (C) biết tiếp tuyến đó song song với đường thẳng d. + Quãng đường chuyển động của một chất điểm được biểu thị bởi công thức, trong đó t > 0, t tính bằng giây và s tính bằng mét. a) Hãy xác định vận tốc tức thời và gia tốc tức thời của chất điểm tại thời điểm t. b) Tính gia tốc của chất điểm tại thời điểm vận tốc triệt tiêu. + Xét tính liên tục của hàm số y = f(x) tại x0 = 2.