Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 trường THCS Cầu Giấy Hà Nội

Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 trường THCS Cầu Giấy Hà Nội Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 9 môn Toán năm 2022 - 2023 trường THCS Cầu Giấy, Hà Nội Đề học sinh giỏi lớp 9 môn Toán năm 2022 - 2023 trường THCS Cầu Giấy, Hà Nội Chào quý thầy, cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến mọi người đề thi chọn học sinh giỏi môn Toán lớp 9 năm học 2022 – 2023 của trường THCS Cầu Giấy, Hà Nội. Đề thi bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài là 90 phút (không tính thời gian phát đề). Kỳ thi sẽ được tổ chức vào ngày ... tháng 09 năm 2022. Đề học sinh giỏi Toán lớp 9 năm 2022 – 2023 trường THCS Cầu Giấy, Hà Nội có những bài toán đa dạng và thú vị, mời quý vị cùng tham gia giải đề thi nhé. Dưới đây là một số câu hỏi trong đề thi: 1. Tìm giá trị nhỏ nhất và lớn nhất của biểu thức T = 1/(a + 1) + 1/(b + 1) + 1/(c + 1), với a, b, c là các số thực không âm thỏa mãn a + b + c = 3. 2. Trên tam giác nhọn ABC, ta có đường cao AD, BE, CF đồng qui tại H. Chứng minh rằng I là trung điểm của AH và IEM = 90°. 3. Xét tập hợp A gồm các số nguyên dương không vượt quá 100, thỏa mãn điều kiện nếu không phải số nhỏ nhất thì tồn tại a, b, c trong A sao cho x = a + b + c. Chứng minh rằng tất cả các phần tử của tập hợp A đều là số chẵn. Các em hãy thử sức với đề thi này và cố gắng giải đúng nhé! Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề HSG cấp huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Nam Trực Nam Định
Nội dung Đề HSG cấp huyện lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Nam Trực Nam Định Bản PDF - Nội dung bài viết Đề HSG cấp huyện lớp 9 môn Toán năm 2022 - 2023 Đề HSG cấp huyện lớp 9 môn Toán năm 2022 - 2023 Chào mừng đến với Đề HSG cấp huyện môn Toán lớp 9 năm học 2022 - 2023 từ phòng Giáo dục và Đào tạo huyện Nam Trực, tỉnh Nam Định. Đề thi này được thiết kế để kiểm tra và đánh giá năng lực của học sinh giỏi trong môn Toán. Trong đề thi này, các em sẽ đối diện với các bài toán thú vị và có tính logic cao. Ví dụ, một trong những câu hỏi đòi hỏi học sinh chứng minh rằng một số tự nhiên m,n thỏa mãn điều kiện nhất định. Bài toán khác yêu cầu học sinh tìm ra cách thực hiện một trò chơi cụ thể trên bảng số và đưa ra kết luận cuối cùng. Đề thi còn chứa các câu hỏi về hình học và đại số, giúp học sinh phát triển kỹ năng tư duy logic và kỹ năng giải quyết vấn đề. Việc giải các bài toán này không chỉ giúp học sinh rèn luyện khả năng toán học mà còn là cơ hội để họ phát triển tư duy sáng tạo và logic. Chúng tôi hy vọng rằng, qua việc tham gia vào Đề HSG cấp huyện lớp 9 môn Toán, các em sẽ có cơ hội thử thách bản thân, nâng cao kiến thức và kỹ năng toán học của mình. Chúc các em thành công!
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Lào Cai
Nội dung Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Lào Cai Bản PDF - Nội dung bài viết Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 Chúng ta hãy cùng tìm hiểu về đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2022 - 2023 của sở Giáo dục và Đào tạo tỉnh Lào Cai. 1. Tính xác suất để quân Tốt trên bàn cờ vua không nằm trên đường chéo hoặc cạnh của bàn cờ. 2. Anh Hùng điều khiển xe gắn máy từ thành phố A đến thành phố B. Anh đi được 3/4 quãng đường, sau đó dừng sửa xe. Biết anh đi với vận tốc giảm 10 km/h và đến thành phố B vào lúc 10 giờ 24 phút. Hỏi anh dừng sửa xe lúc mấy giờ? 3. Chứng minh rằng 5 điểm A, E, D, M, O thuộc một đường tròn và tứ giác BQOC nội tiếp một đường tròn. Tiếp tuyến tại B, C của đường tròn (O) và đường thẳng AD đồng quy. Chứng minh HAK = MAO và KB/KC = AB^2/AC^2. Đề thi này sẽ giúp các em rèn luyện kỹ năng giải bài toán logic, tính toán và chứng minh trong môn Toán. Hy vọng rằng các em sẽ tự tin và thành công trong kỳ thi sắp tới. Chúc các em học tốt!
Đề học sinh giỏi lớp 9 môn Toán cấp tỉnh năm 2022 2023 sở GD ĐT Thừa Thiên Huế
Nội dung Đề học sinh giỏi lớp 9 môn Toán cấp tỉnh năm 2022 2023 sở GD ĐT Thừa Thiên Huế Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 9 môn Toán cấp tỉnh năm 2022 - 2023 Đề học sinh giỏi lớp 9 môn Toán cấp tỉnh năm 2022 - 2023 Sytu xin được giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 THCS cấp tỉnh năm học 2022 - 2023 của Sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế. Kỳ thi sẽ diễn ra vào thứ Năm, ngày 06 tháng 04 năm 2023. Dưới đây là một số câu hỏi được trích dẫn từ đề thi: 1. Cho biểu thức \(A = (x^2 + 4x + 4)\). a) Hãy rút gọn biểu thức A. b) Tìm tất cả các số nguyên x sao cho A + 3 là số nguyên tố. 2. Cho phương trình \(x^2 - mx - 2 = 0\). a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m. Gọi hai nghiệm đó là x1, x2. Hãy tìm giá trị của m sao cho \((x_1 + 2)(x_2 + 2) = 6\). b) Đặt \(B = x_1^4 + x_2^4\), chứng minh rằng khi m là số nguyên thì B cũng là số nguyên và B + 1 chia hết cho 3. 3. Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn tâm O, M là trung điểm BC. Các tiếp tuyến của đường tròn (O) tại B, C cắt nhau tại K, AK cắt đường tròn (O) tại điểm thứ hai P. a) Chứng minh rằng \(KP \cdot KA = KM \cdot KO\). b) Chứng minh rằng tam giác PKM đồng dạng tam giác OAM. c) Chứng minh rằng \(BAK = MAC\). d) Gọi BE, CF lần lượt là các đường cao của tam giác ABC, H là giao điểm của AK với BC, G là giao điểm của AM với EF. Chứng minh rằng GH vuông góc với BC.
Đề chọn đội tuyển HSG lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Kim Thành Hải Dương
Nội dung Đề chọn đội tuyển HSG lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Kim Thành Hải Dương Bản PDF Sytu xin gửi đến quý thầy cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển chính thức học sinh giỏi tham dự kỳ thi cấp tỉnh môn Toán lớp 9 năm học 2022 - 2023 tại phòng Giáo dục và Đào tạo UBND huyện Kim Thành, tỉnh Hải Dương. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn từ Đề chọn đội tuyển HSG Toán lớp 9 năm 2022 - 2023 phòng GD&ĐT Kim Thành - Hải Dương: Cho a, b, c, k là các số tự nhiên thỏa mãn: \(333^2 = abc + k\). Chứng minh rằng \(k - 1\) chia hết cho 3. Tìm x, y nguyên biết: \(2x^2 + 7y^2 = 4xy + 12x - 5y\). Cho ∆ABC vuông tại A, đường cao AH. Các đường phân giác của góc BAH, CAH cắt BC lần lượt tại E, F. Chứng minh: \(\frac{BC}{CH} = \frac{EH}{BE}\) và tâm đường tròn ngoại tiếp ∆AEF trùng với tâm đường tròn nội tiếp ∆ABC. Kí hiệu \(d_1, d_2\) lần lượt là các đường thẳng vuông góc với BC tại E, F. Chứng minh rằng \(d_1, d_2\) tiếp xúc với đường tròn nội tiếp ∆ABC. Cho tam giác ABC. Gọi \(l_1, l_2, l_3\) lần lượt là độ dài các đường phân giác trong của góc A, B, C. Chứng minh rằng \(2\cos^2 A = \frac{bc}{l_1}\) và \(\frac{1}{l_1} = \frac{1}{l_2} + \frac{1}{l_3}\). File WORD (dành cho quý thầy, cô): [INSERT LINK TO WORD FILE]