Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 trường THCS Cầu Giấy Hà Nội

Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 trường THCS Cầu Giấy Hà Nội Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 9 môn Toán năm 2022 - 2023 trường THCS Cầu Giấy, Hà Nội Đề học sinh giỏi lớp 9 môn Toán năm 2022 - 2023 trường THCS Cầu Giấy, Hà Nội Chào quý thầy, cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến mọi người đề thi chọn học sinh giỏi môn Toán lớp 9 năm học 2022 – 2023 của trường THCS Cầu Giấy, Hà Nội. Đề thi bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài là 90 phút (không tính thời gian phát đề). Kỳ thi sẽ được tổ chức vào ngày ... tháng 09 năm 2022. Đề học sinh giỏi Toán lớp 9 năm 2022 – 2023 trường THCS Cầu Giấy, Hà Nội có những bài toán đa dạng và thú vị, mời quý vị cùng tham gia giải đề thi nhé. Dưới đây là một số câu hỏi trong đề thi: 1. Tìm giá trị nhỏ nhất và lớn nhất của biểu thức T = 1/(a + 1) + 1/(b + 1) + 1/(c + 1), với a, b, c là các số thực không âm thỏa mãn a + b + c = 3. 2. Trên tam giác nhọn ABC, ta có đường cao AD, BE, CF đồng qui tại H. Chứng minh rằng I là trung điểm của AH và IEM = 90°. 3. Xét tập hợp A gồm các số nguyên dương không vượt quá 100, thỏa mãn điều kiện nếu không phải số nhỏ nhất thì tồn tại a, b, c trong A sao cho x = a + b + c. Chứng minh rằng tất cả các phần tử của tập hợp A đều là số chẵn. Các em hãy thử sức với đề thi này và cố gắng giải đúng nhé! Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi HSG Toán 9 năm 2023 - 2024 phòng GDĐT thành phố Vinh - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Vinh, tỉnh Nghệ An. Trích dẫn Đề thi HSG Toán 9 năm 2023 – 2024 phòng GD&ĐT thành phố Vinh – Nghệ An : + Chứng minh rằng với mọi số nguyên n thì: n3 + 3n2 + 2024n chia hết cho 6. b. Tìm số tự nhiên n sao cho: 3n + 19 là số chính phương. c. Cho a, b là các số thực dương. Tìm giá trị nhỏ nhất của biểu thức: Q. + Cho nửa đường tròn tâm O, đường kính AB = 2a. Lấy điểm M bất kì trên đoạn thẳng AB (không trùng với A và B). Trên nửa mặt phẳng bờ AB chứa nửa đường tròn kẻ hai tia Mx, My sao cho AMx = BMy = 30°. Tia Mx và tia My cắt nửa đường tròn tâm O lần lượt tại E và F. Gọi P, Q theo thứ tự là hình chiếu của điểm E, F trên AB. a. Giả sử EF = a3. Tính số đo góc EOF. b. Cho AM = a/2. Tính diện tích hình thang EPQF theo a. c. Chứng minh rằng khi M di động trên đoạn thẳng AB, điểm O luôn cách đường thẳng EF một khoảng không đổi. + Cho tam giác ABC, O là giao điểm của ba đường phân giác. Qua O kẻ đường thẳng bất kỳ cắt hai cạnh AB, AC tại M, N. Giả sử điểm O cố định và khoảng cách từ O đến cạnh AB của tam giác ABC bằng 1cm. Xác định dạng của tam giác ABC và vị trí của đường thẳng MN để diện tích tam giác AMN đạt giá trị nhỏ nhất.
Đề thi HSG Toán 9 cấp thị xã năm 2023 - 2024 phòng GDĐT Đông Hòa - Phú Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 THCS cấp thị xã năm học 2023 – 2024 phòng Giáo dục và Đào tạo thị xã Đông Hòa, tỉnh Phú Yên. Trích dẫn Đề thi HSG Toán 9 cấp thị xã năm 2023 – 2024 phòng GD&ĐT Đông Hòa – Phú Yên : + Tìm số tự nhiên n bé nhất để: B = n3 + 5n2 – 9n – 45 chia hết cho 2023. Tìm các nghiệm nguyên của phương trình: 5x – 3y = 2xy – 11. + Cho hình thang ABCD, đáy lớn AB. Từ D kẻ đường thẳng song song với cạnh BC, cắt đường chéo AC tại M và cắt cạnh AB tại K. Từ C kẻ đường thẳng song song với cạnh AD, cắt đường chéo BD tại I và cắt cạnh AB tại F. Qua F kẻ đường thẳng song song với AC cắt cạnh BC tại P. Chứng minh rằng: a) Tứ giác ADCF là hình bình hành và MP // AB. b) Ba điểm M, I, P thẳng hàng. c) DC2 = AB.MI. + Cho hình thoi ABCD với góc A bằng 120. Tia Ax tạo với tia AB góc BAx bằng 15° và cắt cạnh BC tại M, cắt đường thẳng CD tại N. Chứng minh rằng: 3/AM2 + 3/AN2 = 4/AB2.
Đề thi HSG Toán 9 cấp huyện năm 2023 - 2024 phòng GDĐT Khoái Châu - Hưng Yên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp huyện năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Khoái Châu, tỉnh Hưng Yên; kỳ thi được diễn ra vào sáng thứ Năm ngày 23 tháng 11 năm 2023.
Đề thi HSG Toán THCS năm 2023 - 2024 trường THTHCS Tây Tiến - Sơn La
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán cấp THCS năm học 2023 – 2024 trường TH&THCS Tây Tiến, huyện Mộc Châu, tỉnh Sơn La; đề thi có đáp án và biểu điểm. Trích dẫn Đề thi HSG Toán THCS năm 2023 – 2024 trường TH&THCS Tây Tiến – Sơn La : + Cho AB là đường kính của đường tròn (O; R). C là một điểm thay đổi trên đường tròn (C khác A và B), kẻ CH vuông góc với AB tại H. Gọi I là trung điểm của AC, OI cắt tiếp tuyến tại A của đường tròn (O; R) tại M. a) Chứng minh 4 điểm C, H, O, I cùng thuộc một đường tròn. b) Chứng minh MC là tiếp tuyến của (O; R). c) Xác định vị trí của C để chu vi tam giác ACB đạt giá trị lớn nhất? Tìm giá trị lớn nhất đó theo R. + Cho hàm số y = mx – 2m -1 (m 0) a) Chứng minh rằng đồ thị hàm số luôn đi qua một điểm cố định. b) Gọi A, B lần lượt là giao điểm của đồ thị hàm số với các trục Ox, Oy. Xác định m để diện tích tam giác AOB bằng 4 (đvdt). + Cho x, y, z > 0 thoả mãn x + y + z = 2. Tìm giá trị nhỏ nhất của biểu thức P = 2 2 2 xyz y z z x x y.