Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán cấp tỉnh năm 2022 2023 sở GD ĐT Thừa Thiên Huế

Nội dung Đề học sinh giỏi lớp 9 môn Toán cấp tỉnh năm 2022 2023 sở GD ĐT Thừa Thiên Huế Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 9 môn Toán cấp tỉnh năm 2022 - 2023 Đề học sinh giỏi lớp 9 môn Toán cấp tỉnh năm 2022 - 2023 Sytu xin được giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 THCS cấp tỉnh năm học 2022 - 2023 của Sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế. Kỳ thi sẽ diễn ra vào thứ Năm, ngày 06 tháng 04 năm 2023. Dưới đây là một số câu hỏi được trích dẫn từ đề thi: 1. Cho biểu thức \(A = (x^2 + 4x + 4)\). a) Hãy rút gọn biểu thức A. b) Tìm tất cả các số nguyên x sao cho A + 3 là số nguyên tố. 2. Cho phương trình \(x^2 - mx - 2 = 0\). a) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi giá trị của m. Gọi hai nghiệm đó là x1, x2. Hãy tìm giá trị của m sao cho \((x_1 + 2)(x_2 + 2) = 6\). b) Đặt \(B = x_1^4 + x_2^4\), chứng minh rằng khi m là số nguyên thì B cũng là số nguyên và B + 1 chia hết cho 3. 3. Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn tâm O, M là trung điểm BC. Các tiếp tuyến của đường tròn (O) tại B, C cắt nhau tại K, AK cắt đường tròn (O) tại điểm thứ hai P. a) Chứng minh rằng \(KP \cdot KA = KM \cdot KO\). b) Chứng minh rằng tam giác PKM đồng dạng tam giác OAM. c) Chứng minh rằng \(BAK = MAC\). d) Gọi BE, CF lần lượt là các đường cao của tam giác ABC, H là giao điểm của AK với BC, G là giao điểm của AM với EF. Chứng minh rằng GH vuông góc với BC.

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán THCS cấp tỉnh năm 2020 - 2021 sở GDĐT Bình Dương
Đề thi học sinh giỏi Toán THCS cấp tỉnh năm 2020 – 2021 sở GD&ĐT Bình Dương gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề thi học sinh giỏi Toán THCS cấp tỉnh năm 2020 – 2021 sở GD&ĐT Bình Dương : + Cho 40 số nguyên dương thay đổi sao cho có tổng bằng 58. Tìm giá trị lớn nhất và giá trị nhỏ nhất của tổng các bình phương của chúng. + Giả sử ba số thực a, b, c thỏa mãn điều kiện a > 0, bc = 3a, a + b + c = abc. Chứng minh rằng: a21 + 213. + Cho tam giác ABC cân tại A, có đường tròn nội tiếp (I). Các điểm E, F theo thứ tự thuộc các cạnh CA, AB (E khác C và A; F khác B và A) sao cho EF tiếp xúc với đường tròn (I) tại điểm P. Gọi K L lần lượt là hình chiếu vuông góc của E, F trên BC. Giả sử FK cắt EL tại điểm J. Gọi H là hình chiếu vuông góc của J trên BC. a) Chứng minh rằng HJ là phân giác của góc EHF. b) Ký hiệu S1, S2 lần lượt là diện tích của tứ giác BFJL và CEJK. Chứng minh rằng: BP2 V 5 CE. c) Gọi D là trung điểm cạnh BC. Chứng minh rằng ba điểm P, J, D thẳng hàng.
Đề thi học sinh giỏi Toán 9 năm 2020 - 2021 phòng GDĐT thành phố Thái Nguyên
Đề thi học sinh giỏi Toán 9 năm 2020 – 2021 phòng GD&ĐT thành phố Thái Nguyên gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút.
Đề thi chọn học sinh giỏi tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Thái Nguyên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Thái Nguyên.
Đề thi học sinh giỏi Toán 9 năm 2020 - 2021 sở GDĐT Hà Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT Hà Nam. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT Hà Nam : + Trong mặt phẳng Oxy, cho parabol (P): y = x2 và đường thẳng (d): y = mx + 2 (với m là tham số). Tìm tất cả các giá trị của m để (d) cắt (P) tại hai điểm phân biệt A, B sao cho diện tích tam giác OAB bằng 5 (đơn vị diện tích). + Cho tam giác ABC có ba góc nhọn, nội tiếp đường tròn (O). Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H, EF cắt (O) tại P và Q (P thuộc cung nhỏ AB). a) Chứng minh tam giác APQ cân. b) Chứng minh DH.DA = DE.DF. c) Lấy điểm M đối xứng với điểm P qua AB, điểm N đối xứng với điểm Q qua AC. Chứng minh MN // BC. + Cho đường tròn (I) nội tiếp tam giác ABC, (I) tiếp xúc với ba cạnh  BC, CA, AB lần lượt tại các điểm D, E, F. Gọi M là trung điểm của BC. Chứng minh các đường thẳng AM, EF, DI đồng quy.