Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử vào lớp 10 môn Toán năm 2020 - 2021 phòng GDĐT Vĩnh Bảo - Hải Phòng

Thứ Sáu ngày 29 tháng 05 năm 2020, phòng Giáo dục và Đào tạo huyện Vĩnh Bảo, thành phố Hải Phòng tổ chức kỳ thi thử tuyển sinh vào lớp 10 môn Toán năm học 2020 – 2021. Đề thi thử vào lớp 10 môn Toán năm 2020 – 2021 phòng GD&ĐT Vĩnh Bảo – Hải Phòng gồm 02 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi thử vào lớp 10 môn Toán năm 2020 – 2021 phòng GD&ĐT Vĩnh Bảo – Hải Phòng : + Máy thở là một thiết bị công nghệ hữu ích, có tác dụng hỗ trợ hô hấp cho những người rất kém hoặc không còn khả năng tự hô hấp. Đây là thiết bị sống còn giúp chống chọi với bệnh Covid-19 của các bệnh nhân đã mắc ở thể nặng. Theo ước tính có khoảng 10% bệnh nhân mắc bệnh Covid-19 phải dùng đến máy thở, do đó khi dịch bệnh bùng phát thì trên thế giới sẽ thiếu hụt nghiêm trọng các thiết bị này. Để chủ động ứng phó dịch bệnh, một nhà máy được giao sản xuất 360 chiếc máy thở trong một thời gian hạn định. Trước tình hình dịch bệnh Covid 19 diễn biến hết sức phức tạp, xác định trách nhiệm tham gia bảo vệ sức khỏe cộng đồng nên nhà máy đã nâng cao năng lực sản xuất bằng cách tiến hành cải tiến kỹ thuật đồng thời kết hợp tăng ca để quyết tâm rút ngắn thời gian hoàn thành kế hoạch. Chính vì vậy, trên thực tế mỗi ngày nhà máy đã sản xuất tăng thêm 3 máy nên hoàn thành sớm trước 6 ngày so với kế hoạch được giao. Hỏi theo kế hoạch thì mỗi ngày nhà máy phải sản xuất bao nhiêu chiếc máy thở. [ads] + Cho đường tròn (O) đường kính AB. Lấy điểm C nằm trên đường kính AB và điểm D trên đường tròn (O) (các điểm C, D không trùng với A và B). Gọi E là điểm chính giữa cung nhỏ BD. Đường thẳng EC cắt đường tròn tại điểm thứ hai F. Gọi G là giao điểm của DF và AE. a) Chứng minh BAE = DFE và AGCF là tứ giác nội tiếp. b) Chứng minh CG vuông góc với AD. c) Kẻ đường thẳng đi qua C song song với AD cắt DF tại H. Chứng minh CH = CB. + Quay hình chữ nhật ABCD quanh cạnh AB một vòng ta được một hình trụ. Tính thể tích của hình trụ đó biết rằng AB = 2.AD = 4cm.

Nguồn: toanmath.com

Đọc Sách

Đề Toán định hướng vào 10 năm 2022 lần 2 trường Trần Mai Ninh - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi môn Toán định hướng tuyển sinh vào lớp 10 năm học 2021 – 2022 lần 2 trường THCS Trần Mai Ninh, tỉnh Thanh Hóa; kỳ thi được diễn ra vào thứ Bảy ngày 16 tháng 04 năm 2022. Trích dẫn đề Toán định hướng vào 10 năm 2022 lần 2 trường Trần Mai Ninh – Thanh Hóa : + Gọi P là một điểm nằm trên đoạn thẳng MN (P khác M, P khác N). Trên nửa mặt phẳng có bờ là đường thẳng MN, kẻ các tia Mx, Ny cùng vuông góc với MN. Trên tia Mx lấy điểm I (I khác M). Đường thẳng vuông góc với PI tại P cắt tia Ny tại K; đường tròn đường kính IP cắt IK tại Q. 1. Chứng minh rằng: al Tứ giác PQKN nội tiếp được trong một đường tròn. Xác định tâm của đường tròn đó. b/ Tam giác MNQ là tam giác vuông. + Cho M, I, N cố định. Tìm vị trí của điểm P trên đoạn thẳng MN sao cho tứ giác MNKI có diện tích lớn nhất. + Cho x, y, z là ba số thực dương tuỳ ý thoả mãn: x + y + z = 2. Tìm giá trị lớn nhất của biểu thức: P.
Bộ đề tham khảo môn Toán tuyển sinh 10 năm 2022 - 2023 sở GDĐT TP Hồ Chí Minh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 bộ tài liệu tuyển tập đề tham khảo môn Toán tuyển sinh vào lớp 10 năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Hồ Chí Minh (do Hội Đồng Bộ Môn Toán Thành Phố Hồ Chí Minh biên soạn). MỤC LỤC : Đề tham khảo tuyển sinh 10 Thành phố Thủ Đức – Đề số 1 3. Đề tham khảo tuyển sinh 10 Thành phố Thủ Đức – Đề số 2 5. Đề tham khảo tuyển sinh 10 Thành phố Thủ Đức – Đề số 3 7. Đề tham khảo tuyển sinh 10 Thành phố Thủ Đức – Đề số 4 9. Đề tham khảo tuyển sinh 10 Thành phố Thủ Đức – Đề số 5 11. Đề tham khảo tuyển sinh 10 Quận 1 – Đề số 1 13. Đề tham khảo tuyển sinh 10 Quận 1 – Đề số 2 15. Đề tham khảo tuyển sinh 10 Quận 1 – Đề số 3 17. Đề tham khảo tuyển sinh 10 Quận 3 – Đề số 1 19. Đề tham khảo tuyển sinh 10 Quận 3 – Đề số 2 21. Đề tham khảo tuyển sinh 10 Quận 3 – Đề số 3 23. Đề tham khảo tuyển sinh 10 Quận 4 – Đề số 1 25. Đề tham khảo tuyển sinh 10 Quận 4 – Đề số 2 27. Đề tham khảo tuyển sinh 10 Quận 4 – Đề số 3 29. Đề tham khảo tuyển sinh 10 Quận 5 – Đề số 1 31. Đề tham khảo tuyển sinh 10 Quận 5 – Đề số 2 33. Đề tham khảo tuyển sinh 10 Quận 5 – Đề số 3 35. Đề tham khảo tuyển sinh 10 Quận 6 – Đề số 1 36. Đề tham khảo tuyển sinh 10 Quận 6 – Đề số 2 38. Đề tham khảo tuyển sinh 10 Quận 6 – Đề số 3 40. Đề tham khảo tuyển sinh 10 Quận 7 – Đề số 1 42. Đề tham khảo tuyển sinh 10 Quận 7 – Đề số 2 44. Đề tham khảo tuyển sinh 10 Quận 7 – Đề số 3 46. Đề tham khảo tuyển sinh 10 Quận 8 – Đề số 1 48. Đề tham khảo tuyển sinh 10 Quận 8 – Đề số 2 50. Đề tham khảo tuyển sinh 10 Quận 8 – Đề số 3 52. Đề tham khảo tuyển sinh 10 Quận 10 – Đề số 1 54. Đề tham khảo tuyển sinh 10 Quận 10 – Đề số 2 56. Đề tham khảo tuyển sinh 10 Quận 10 – Đề số 3 58. Đề tham khảo tuyển sinh 10 Quận 11 – Đề số 1 60. Đề tham khảo tuyển sinh 10 Quận 11 – Đề số 2 62. Đề tham khảo tuyển sinh 10 Quận 11 – Đề số 3 64. Đề tham khảo tuyển sinh 10 Quận 12 – Đề số 1 66. Đề tham khảo tuyển sinh 10 Quận 12 – Đề số 2 68. Đề tham khảo tuyển sinh 10 Quận 12 – Đề số 3 70. Đề tham khảo tuyển sinh 10 Quận Bình Tân – Đề số 1 72. Đề tham khảo tuyển sinh 10 Quận Bình Tân – Đề số 2 75. Đề tham khảo tuyển sinh 10 Quận Bình Tân – Đề số 3 77. Đề tham khảo tuyển sinh 10 Quận Bình Thạnh – Đề số 1 79. Đề tham khảo tuyển sinh 10 Quận Bình Thạnh – Đề số 2 81. Đề tham khảo tuyển sinh 10 Quận Bình Thạnh – Đề số 3 83. Đề tham khảo tuyển sinh 10 Quận Gò Vấp – Đề số 1 85. Đề tham khảo tuyển sinh 10 Quận Gò Vấp – Đề số 2 87. Đề tham khảo tuyển sinh 10 Quận Gò Vấp – Đề số 3 89. Đề tham khảo tuyển sinh 10 Quận Phú Nhuận – Đề số 1 91. Đề tham khảo tuyển sinh 10 Quận Phú Nhuận – Đề số 2 93. Đề tham khảo tuyển sinh 10 Quận Phú Nhuận – Đề số 3 95. Đề tham khảo tuyển sinh 10 Quận Tân Bình – Đề số 1 97. Đề tham khảo tuyển sinh 10 Quận Tân Bình – Đề số 2 99. Đề tham khảo tuyển sinh 10 Quận Tân Bình – Đề số 3 101. Đề tham khảo tuyển sinh 10 Quận Tân Phú – Đề số 1 103. Đề tham khảo tuyển sinh 10 Quận Tân Phú – Đề số 2 105. Đề tham khảo tuyển sinh 10 Quận Tân Phú – Đề số 3 107. Đề tham khảo tuyển sinh 10 Huyện Bình Chánh – Đề số 1 109. Đề tham khảo tuyển sinh 10 Huyện Bình Chánh – Đề số 2 111. Đề tham khảo tuyển sinh 10 Huyện Bình Chánh – Đề số 3 113. Đề tham khảo tuyển sinh 10 Huyện Cần Giờ – Đề số 1 115. Đề tham khảo tuyển sinh 10 Huyện Cần Giờ – Đề số 2 117. Đề tham khảo tuyển sinh 10 Huyện Cần Giờ – Đề số 3 119. Đề tham khảo tuyển sinh 10 Huyện Củ Chi – Đề số 01 121. Đề tham khảo tuyển sinh 10 Huyện Củ Chi – Đề số 02 122. Đề tham khảo tuyển sinh 10 Huyện Củ Chi – Đề số 03 123. Đề tham khảo tuyển sinh 10 Huyện Hóc Môn – Đề số 1 125. Đề tham khảo tuyển sinh 10 Huyện Hóc Môn – Đề số 2 127. Đề tham khảo tuyển sinh 10 Huyện Hóc Môn – Đề số 3 129. Đề tham khảo tuyển sinh 10 Huyện Nhà Bè – Đề số 01 131. Đề tham khảo tuyển sinh 10 Huyện Nhà Bè – Đề số 02 133. Đề tham khảo tuyển sinh 10 Huyện Nhà Bè – Đề số 03 135.
Đề khảo sát Toán tuyển sinh 10 năm 2022 - 2023 phòng GDĐT Tiền Hải - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát môn Toán 9 tuyển sinh vào lớp 10 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Tiền Hải, tỉnh Thái Bình. Trích dẫn đề khảo sát Toán tuyển sinh 10 năm 2022 – 2023 phòng GD&ĐT Tiền Hải – Thái Bình : + Một lon nước ngọt hình trụ có bán kính đáy là 3cm, đường cao gấp 4 lần bán kính đáy. Tính thể tích lon nước đó. + Cho nửa đường tròn (O; R) đường kính BC. Gọi H là trung điểm của OB. Đường thẳng d vuông góc với BC tại H cắt nửa đường tròn trên ở A. Trên cung AC lấy điểm M (M không trùng với A và C). Tia CM cắt đường thẳng d ở E. BM cắt đường thẳng d ở F và BE cắt nửa đường tròn trên ở Q. a) Chứng minh tứ giác BHME nội tiếp một đường tròn. b) Chứng minh tứ giác EQHC nội tiếp và tính giá trị của biểu thức AC2 + BQ.BE theo R. c) Chứng minh rằng khi M di động trên cung AC thì đường tròn ngoại tiếp tam giác BFE luôn đi qua hai điểm cố định. + Cho hai biểu thức 1) Tính giá trị của biểu thức A khi x = 9. 2) Rút gọn biểu thức B. 3) Tìm tất cả các giá trị của x để biểu thức P = A.B nhận giá trị là số nguyên.
Đề tham khảo tuyển sinh vào lớp 10 THPT năm 2022 - 2023 sở GDĐT Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề tham khảo tuyển sinh vào lớp 10 THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Phú Thọ; đề thi gồm 02 trang với 10 câu trắc nghiệm khách quan (chiếm 2.5 điểm) và 04 câu tự luận (chiếm 7.5 điểm), thời gian làm bài 120 phút (không kể thời gian phát đề), đề thi có đáp án và lời giải chi tiết, bảng đáp án và lời giải chi tiết được biên soạn bởi thầy giáo Vũ Hưng và thầy giáo Nguyễn Quang. Trích dẫn đề tham khảo tuyển sinh vào lớp 10 THPT năm 2022 – 2023 sở GD&ĐT Phú Thọ : + Trên một cái thang dài 3,5m người ta ghi: “Để đảm bảo an toàn khi sử dụng, phải đặt thang tạo với mặt đất một góc có độ lớn từ 60 đến 70 độ”. Gọi x m x 0 là khoảng cách từ chân thang đến chân tường. Để đảm bảo an toàn khi sử dụng thì điều kiện của x là? + Cho parabol 2 P y x và đường thẳng d y mx 3 2. a) Viết phương trình đường thẳng đi qua hai điểm A và B. Biết hai điểm A và B đều thuộc parabol P có hoành độ lần lượt là [1;2]. b) Tìm m để đường thẳng d cắt parabol P tại hai điểm phân biệt 1 1 C x y 2 2 D x y sao cho 2 2 2 1 2 1 T y y x x 10 đạt giá trị nhỏ nhất. + Cho đường tròn O và dây BC không đi qua O. Điểm A thuộc cung lớn BC (A khác B C), M là điểm chính giữa cung nhỏ BC. Hai tiếp tuyến của O tại C và M cắt nhau ở N. Gọi K là giao điểm của đường thẳng AB và CM, tia AM cắt tia CN tại P, hai đoạn thẳng AM và BC cắt nhau tại Q. Chứng minh rằng a) Tứ giác ACPK nội tiếp đường tròn b) MN song song với BC. c) 1 1 1 CN KP CQ.