Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bộ đề ôn tập thi THPTQG 2019 môn Toán sở GDĐT Vĩnh Long

Tài liệu gồm 726 trang giới thiệu 31 đề thi ôn tập kỳ thi THPT Quốc gia môn Toán năm học 2018 – 2019 của sở Giáo dục và Đào tạo tỉnh Vĩnh Long, các đề được biên soạn dựa theo 3 ma trận đề, có đáp án và lời giải chi tiết. Ma trận đề ôn tập thi THPTQG 2019 môn Toán sở GD&ĐT Vĩnh Long: HÀM SỐ VÀ CÁC VẤN ĐỀ LIÊN QUAN 1. Xét tính đơn điệu của hàm số (biết y, y’). 2. Tìm cực trị, điểm cực trị (biết đồ thị, bảng biến thiên). 3 Nhận dạng bảng biến thiên, nhận dạng hàm số. 4. GTLN và GTNN biết đồ thị, bảng biến thiên. 5 Tìm đường tiệm cận (biết y). 6. Nhận dạng 3 hàm số thường gặp (biết đồ thị, bảng biến thiên). 7. Điều kiện để hàm số bậc ba đơn điệu trên khoảng K. 8. Điều kiện để hàm số có cực trị tại x0 (cụ thể). 9. Điều kiện hình học về 2 điểm cực trị (hàm bậc ba). 10. Nhận dạng hàm số chứa dấu giá trị tuyệt đối (biết đồ thị). 11. Đồ thị hàm nhất biến cắt d, thoả điều kiện hình học. 12. Bài toán thực tế, liên môn về GTLN – GTNN (max – min). HÀM SỐ LUỸ THỪA, MŨ VÀ LÔGARIT 13. Tập xác định của hàm luỹ thừa, hàm vô tỷ. 14. Thu gọn biểu thức, luỹ thừa. 15. Tìm tập xác định của hàm số mũ, hàm số lôgarít. 16. Bài toán thực tế, liên môn. 17. Dạng phương trình, bất phương trình mũ cơ bản. 18. Toán tham số về phương trình mũ. NGUYÊN HÀM TÍCH PHÂN VÀ ỨNG DỤNG 19. Công thức nguyên hàm cơ bản, mở rộng. 20. Hàm phân thức (chỉ biến đổi, không đặt). 21. Thể hiện quy tắc đổi biến (cho sẵn phép đặt t). 22. Phương pháp từng phần (với u = lôgarit). 23. Câu hỏi giải bằng định nghĩa, ý nghĩa hình học. 24. Thể tích vật thể tròn xoay y = f(x), y = g(x) … (quanh Ox). 25. Bài toán thực tế (gắn hệ trục, tìm đường cong …). [ads] SỐ PHỨC 26. Phần thực, phần ảo. 27. Câu hỏi về mối liên hệ giữa 2 nghiệm phương trình. 28. Tập hợp điểm biểu diễn là đường tròn, hình tròn 29. Max – min của môđun của số phức. KHỐI ĐA DIỆN 30. Tính chất đối xứng của khối đa diện. 31. Phân chia, lắp ghép khối đa diện. 32. Khối chóp có một cạnh bên vuông góc với đáy. 33. Sử dụng định về tỉ số thể tích. 34. Khối lăng trụ xiên (có một mặt bên vuông góc với đáy). 35. Khối hộp chữ nhật KHỐI TRÒN XOAY 36. Tính độ dài đường sinh, bán kính đáy, đường cao khối nón. 37. Tính diện tích xung quanh, diện tích toàn phần khối trụ. 38. Mặt cầu nội tiếp – ngoại tiếp đa diện. OXYZ 39. Tìm tọa độ điểm, tọa độ véctơ thỏa điều kiện cho trước. 40. Tìm tâm và bán kính, điều kiện xác định mặt cầu. 41. Phương trình mặt cầu biết tâm, tiếp xúc với mặt phẳng. 42. Phương trình mặt phẳng qua 3 điểm không thẳng hàng. 43. Phương trình đường thẳng qua 1 điểm, VTCP tìm bằng tích có hướng (cho đường thẳng + mặt phẳng). 44. Xét vị trí tương đối giữa đường thẳng và mặt phẳng. 45. Max – min trong không gian Oxyz. CÁC BÀI TOÁN VẬN DỤNG 46. Tích phân hàm ẩn phương pháp đổi biến. 47. Tích phân hàm ẩn phương pháp từng phần. 48. Max – min của môđun của số phức. 49. Max – min trong không gian Oxyz. 50. Max – min trong không gian Oxyz.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 3 trường Lý Thái Tổ - Bắc Ninh
Ngày … tháng 07 năm 2020, trường THPT Lý Thái Tổ, thị xã Từ Sơn, tỉnh Bắc Ninh tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2019 – 2020 lần thi thứ ba. Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 3 trường Lý Thái Tổ – Bắc Ninh được biên soạn dựa trên ma trận đề tham khảo tốt nghiệp THPT 2020 môn Toán của Bộ GD&ĐT; đề gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán lần 3 trường Lý Thái Tổ – Bắc Ninh : + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc BAD = 120. Gọi O là giao điểm của hai đường chéo AC và BD. Biết SA = SC, SB = SD, mặt phẳng (SCD) tạo với mặt phẳng (ABCD) một góc x thỏa mãn tan x = 2. Mặt phẳng (α) qua A và vuông góc với SC, (α) cắt các cạnh SB, SC, SD lần lượt tại các điểm B’, C’, D’. Thể tích của khối chóp O.AB’C’D’ bằng? [ads] + Cho hàm số y = f(x) có bảng biến thiên như hình vẽ bên. Xét hàm số g(x) = √(3 – x)/(x – 6)[f(x) – m]. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-86;86] để đồ thị hàm số g(x) có đúng ba đường tiệm cận? + Một người gửi tiết kiệm vào ngân hàng với lãi suất 8,4% trên năm và tiền lãi hàng năm được nhập vào tiền vốn. Tính số năm tối thiểu người đó cần gửi để số tiền thu được nhiều hơn 2 lần số tiền gửi ban đầu.
Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 2 trường THPT chuyên ĐHSP Hà Nội
Chiều Chủ Nhật ngày 05 tháng 07 năm 2020, trường THPT chuyên Đại học Sư phạm Hà Nội tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2019 – 2020 lần thi thứ hai. Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 2 trường THPT chuyên ĐHSP Hà Nội mã đề 212 gồm có 06 trang, đề có dạng trắc nghiệm khách quan với 50 câu hỏi và bài toán, thời gian làm bài thi là 90 phút, đề thi có đáp án mã đề 211, 212, 213, 214. Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán lần 2 trường THPT chuyên ĐHSP Hà Nội : + Cho hàm số y = f(x) có bảng biến thiên như hình vẽ dưới đây, trong đó m thuộc R. Chọn khẳng định đúng: A. Đồ thị hàm số có đúng 2 đường tiệm cận đứng và 2 đường tiệm cận ngang với mọi m thuộc R\{2}. B. Đồ thị hàm số có đúng 2 đường tiệm cận đứng và 2 đường tiệm cận ngang với mọi m thuộc R. C. Đồ thị hàm số có đúng 2 đường tiệm cận đứng và 1 đường tiệm cận ngang với mọi m thuộc R. D. Đồ thị hàm số có đúng 2 đường tiệm cận đứng và 1 đường tiệm cận ngang với mọi m thuộc R. [ads] + Cho hình lăng trụ tam giác đều ABC.A’B’C’ có AB = 1, AA’ = 5. Một mặt phẳng (P) cắt các cạnh AA’, BB’, CC lần lượt tại A1, B1, C1 sao cho AA1 = 1, BB1 = 2. Gọi V1 và V2 lần lượt là thể tích khối đa diện ABC.A1B1C1 và A’B’C’.A1B1C1. Giá trị lớn nhất của tích V1.V2 thuộc khoảng nào dưới đây? + Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện |z – 3| = 2 là: A. Đường tròn tâm I(3;0), bán kính R = 2. B. Đường thẳng x = 3. C. Đường thẳng y = 2. D. Đường tròn tâm I(2;0), bán kính R = 3.
Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 4 trường chuyên Nguyễn Trãi - Hải Dương
Chủ Nhật ngày 12 tháng 07 năm 2020, trường THPT chuyên Nguyễn Trãi, tỉnh Hải Dương tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2019 – 2020 lần thi thứ tư. Đề thi thử tốt nghiệp THPT 2020 môn Toán lần 4 trường chuyên Nguyễn Trãi – Hải Dương mã đề 889 gồm có 06 trang, đề thi có dạng trắc nghiệm khách quan với 50 câu hỏi và bài toán, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án mã đề 891, 890, 889, 888. Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán lần 4 trường chuyên Nguyễn Trãi – Hải Dương : + Cho mặt cầu (S) bán kính R = 5 cm. Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn (C) có chu vi bằng 8 cm. Bốn điểm A, B, C, D thay đổi sao cho A, B, C thuộc đường tròn (C), điểm D thuộc (S) (không thuộc đường tròn (C)) và tam giác ABC là tam giác đều. Tính thể tích lớn nhất của khối tứ diện ABCD. [ads] + Một người nhận hợp đồng dài hạn làm việc cho một công ty với mức lương khởi điểm của mỗi tháng trong 3 năm đầu tiên là 6 triệu đồng/tháng. Tính từ ngày đầu tiên làm việc, cứ sau đúng 3 năm liên tiếp thì tăng lương 10% so với mức lương một tháng người đó đang hưởng. Nếu tính theo hợp đồng thì tháng đầu tiên của năm thứ 16 người đó nhận được mức lương là bao nhiêu? + Trong hệ trục tọa độ Oxy cho A(-2;0), B(-2;2), C(4;2), D(4;0). Chọn ngẫu nhiên một điểm có tọa độ (x;y); (với x, y là các số nguyên) nằm trong hình chữ nhật ABCD (kể cả các điểm nằm trên cạnh). Gọi A là biến cố: “x và y đều chia hết cho 2”. Xác suất của biến cố A là?
Đề thi thử TN THPT 2020 môn Toán trường THPT Phan Bội Châu - Khánh Hòa
Ngày … tháng 07 năm 2020, trường THPT Phan Bội Châu, thành phố Cam Ranh, tỉnh Khánh Hòa tổ chức kỳ thi thử tốt nghiệp Trung học Phổ thông môn Toán năm học 2019 – 2020 dành cho học sinh khối 12. Đề thi thử TN THPT 2020 môn Toán trường THPT Phan Bội Châu – Khánh Hòa được xây dựng dựa trên ma trận đề tham khảo tốt nghiệp THPT 2020 môn Toán của Bộ Giáo dục và Đào tạo, đề gồm 07 trang với 50 câu trắc nghiệm, thời gian làm bài thi là 90 phút. Trích dẫn đề thi thử TN THPT 2020 môn Toán trường THPT Phan Bội Châu – Khánh Hòa : + Trong không gian Oxyz, cho mặt cầu (S): x^2 + y^2 + z^2 – 2x + 4y – 6z – 5 = 0, mặt phẳng (P): x – y + 2z – 3 = 0 và điểm A(0;1;2). Gọi ∆ là đường thẳng đi qua A, nằm trong mặt phẳng (P) sao cho cắt mặt cầu (S) theo một dây cung có độ dài nhỏ nhất. Hỏi ∆ đi qua điểm nào sau đây? [ads] + Tính tổng tất cả các giá trị nguyên của tham số m để giá trị nhỏ nhất của hàm số y = |f(sinx) + m| bằng 1, biết y = f(x) là hàm số liên tục trên R và có đồ thị như hình vẽ dưới. + Cho nửa lục giác đều ABCD nội tiếp trong đường tròn đường kính AB, AB = 4a. Cho hình thang ABCD quay xung quanh cạnh AB ta được một khối tròn xoay có thể tích bằng?