Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 1 lớp 10 môn Toán năm 2023 2024 trường THPT Ngô Thì Nhậm Ninh Bình

Nội dung Đề khảo sát lần 1 lớp 10 môn Toán năm 2023 2024 trường THPT Ngô Thì Nhậm Ninh Bình Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi khảo sát chất lượng lần 1 môn Toán lớp 10 năm học 2023 – 2024 trường THPT Ngô Thì Nhậm, tỉnh Ninh Bình; đề thi có đáp án trắc nghiệm mã đề 146. Trích dẫn Đề khảo sát lần 1 Toán lớp 10 năm 2023 – 2024 trường THPT Ngô Thì Nhậm – Ninh Bình : + Một cửa hàng có kế hoạch nhập về hai loại máy tính A và B, giá mỗi loại lần lượt là 5 triệu đồng/1 chiếc và 10 triệu đồng/1 chiếc, với số vốn ban đầu không vượt quá 1 tỉ đồng. Máy A mang lại lợi nhuận 1,5 triệu đồng trên mỗi máy bán được, máy B mang lại lợi nhuận 2 triệu đồng trên mỗi máy bán được. Cửa hàng đó ước tính hàng tháng bán được nhiều nhất là 120 cái. Hỏi lợi nhuận lớn nhất mà cửa hàng thu về trong một tháng là bao nhiêu. + Một khách sạn ở thành phố Ninh Bình bị nước lụt tràn vào, cần di chuyển cùng một lúc 80 hành khách và 60 vali hành lý. Lúc này chỉ huy động được 10 chiếc thuyền lớn và 12 chiếc thuyền nhỏ. Một chiếc thuyền lớn chỉ có thể chở 10 hành khách và 9 vali hành lý. Một chiếc thuyền nhỏ chỉ có thể chở 8 hành khách và 6 vali hành lý. Giá một chuyến thuyền lớn là 300 (ngàn đồng) và giá một chuyến thuyền nhỏ là 250 (ngàn đồng). Hỏi chủ khách sạn cần thuê bao nhiêu chiếc thuyền mỗi loại để chi phí thấp nhất? + Một nhóm có 25 học sinh chuẩn bị cho hội thi thể thao. Trong danh sách đăng ký tham gia thi cầu lông và bóng bàn của nhóm đó, có 12 học sinh tham gia thi cầu lông, có 5 học sinh tham gia cả hai môn cầu lông và bóng bàn. Có 4 học sinh của nhóm không tham gia bất kỳ môn thể thao nào. Hỏi có bao nhiêu học sinh trong nhóm tham gia thi bóng bàn? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG tỉnh Toán 10 THPT năm học 2017 - 2018 sở GD và ĐT Hà Tĩnh
Đề thi chọn HSG tỉnh Toán 10 THPT năm học 2017 – 2018 sở GD và ĐT Hà Tĩnh gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 180 phút, đề được dành cho học sinh lớp 10 và 11 khối THPT, đề thi có lời giải chi tiết . Trích dẫn đề thi chọn HSG tỉnh Toán 10 THPT : + Một hộ nông dân dự định trồng đậu và cà trên diện tích 800 m2. Biết rằng cứ 100 m2 trồng đậu cần 10 công và lãi 7 triệu đồng còn 100 m2 trồng cà cần 15 công và lãi 9 triệu đồng. Hỏi cần trồng mỗi loại cây trên diện tích là bao nhiêu để thu được tiền lãi cao nhất khi tổng số công không vượt quá 90. [ads] + Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC có A(1;2), B(2;7). Biết độ dài đường cao kẻ từ A bằng 1 và đỉnh C thuộc đường thẳng y − 3 = 0. Tìm tọa độ đỉnh C. + Cho tam giác ABC có (sinB + 2018.sinC)/(2018sinB + sinC) = sinA và độ dài các cạnh là các số tự nhiên. Gọi M là trung điểm cạnh BC và G là trọng tâm tam giác ABC. Chứng minh tam giác MBG có diện tích là một số tự nhiên.
Đề thi chọn HSG tỉnh Toán 10 THPT năm 2017 - 2018 sở GD và ĐT Hải Dương
Đề thi chọn HSG tỉnh Toán 10 THPT năm 2017 – 2018 sở GD và ĐT Hải Dương gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 180 phút, nội dung đề gồm các phần: hàm số và đồ thị, phương trình – bất phương trình – hệ phương trình, vectơ, tích vô hướng của hai vectơ và ứng dụng, bài toán tối ưu, min – max, kỳ thi được diễn ra vào ngày 04/04/2018, đề thi HSG Toán 10 có lời giải chi tiết . Trích dẫn đề thi chọn HSG tỉnh Toán 10 : + Cho tam giác ABC có AB = 6, BC = 7, CA = 5. Gọi M là điểm thuộc cạnh AB sao cho AM = 2MB và N là điểm thuộc AC sao cho vtAN = k.vtAC (k ∈ R). Tìm k sao cho đường thẳng CM vuông góc với đường thẳng BN. + Trong mặt phẳng toạ độ Oxy, cho hình chữ nhật ABCD có phương trình đường thẳng AB là x – 2y + 1 = 0. Biết phương trình đường thẳng BD là x – 7y + 14 = 0 và đường thẳng AC đi qua điểm M(2,1). Tìm toạ độ các đỉnh của hình chữ nhật. [ads] + Một xưởng sản xuất có hai máy, sản xuất ra hai loại sản phẩm I và II. Một tấn sản phẩm loại I lãi 2 triệu đồng, một tấn sản phẩm loại II lãi 1,6 triệu đồng. Để sản xuất 1 tấn sản phẩm loại I cần máy thứ nhất làm việc trong 3 giờ và máy thứ hai làm việc trong 1 giờ. Để sản xuất 1 tấn sản phẩm loại II cần máy thứ nhất làm việc trong 1 giờ và máy thứ hai làm việc trong 1 giờ. Mỗi máy không đồng thời làm hai loại sản phẩm cùng lúc. Một ngày máy thứ nhất làm việc không quá 6 giờ, máy thứ hai làm việc không quá 4 giờ. Hỏi một ngày nên sản xuất bao nhiêu tấn mỗi loại sản phẩm để tiền lãi lớn nhất?
Đề thi Olympic Toán 10 năm 2017 - 2018 cụm trường Thanh Xuân Cầu Giấy - Hà Nội
Đề thi Olympic Toán 10 năm 2017 – 2018 cụm trường Thanh Xuân & Cầu Giấy – Hà Nội gồm 1 trang với  bài toán tự luận, thời gian làm bài 150 phút, kỳ thi nhằm tuyển chọn các em HSG môn Toán khối 10, đề thi có lời giải chi tiết . Trích dẫn đề thi Olympic Toán 10 năm 2017 – 2018 : + Cho hàm số y = x^2 – 4x + 3 có đồ thị (P). Lập bảng biến thiên của hàm số đã cho và tìm tọa độ giao điểm của đồ thị (P) với trục hoành Ox. + Tìm a, b, c sao cho hàm số y = f(x) = ax^2 + bx + c có đồ thị là một parabol với đỉnh là I(2; 9) và đường parabol đó đi qua điểm A(-1; 0). + Cho tứ giác ABCD có AC ⊥ BD và nội tiếp đường tròn tâm O bán kính R = 1. Đặt diện tích tứ giác ABCD bằng S và AB = a, BC = b, CD = c, DA = d. Chứng minh rằng (ab + cd)(ad + bc) = 8S.