Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề đại lượng tỉ lệ nghịch Toán 7

Tài liệu gồm 41 trang, bao gồm tóm tắt lí thuyết và hướng dẫn giải các dạng bài tập chuyên đề đại lượng tỉ lệ nghịch trong chương trình môn Toán 7. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Bài toán áp dụng công thức đại lượng tỉ lệ nghịch và dựa vào tính chất tỉ lệ nghịch để tìm các đại lượng. Dạng 1.1 Biểu diễn mối quan hệ tỉ lệ nghịch, xác định hệ số. – Nếu đại lượng y tỉ lệ nghịch với đại lượng x theo hệ số k (k khác 0) thì k y x hay xy k (với k là hằng số khác 0) đồng thời x tỉ lệ nghịch với y theo hệ số tỉ lệ k và k x y. – Nếu viết 1 y k x (k khác 0) thì có tương ứng mới y tỉ lệ thuận với 1 x theo hệ số tỉ lệ k. – Hệ số tỉ lệ k là k x y. Dạng 1.2 Tìm các đại lượng chưa biết. – Nếu đại lượng y tỉ lệ nghịch với đại lượng x theo hệ số k (k khác 0) thì k y x hay xy k (với k là hằng số khác 0) đồng thời x tỉ lệ nghịch với y theo hệ số tỉ lệ k và k x y. – Dùng công thức k y x để xác định tương quan tỉ lệ nghịch giữa hai đại lượng và xác định hệ số tỉ lệ. – Nếu hai đại lượng tỉ lệ nghịch với nhau thì: 2 x y k. Dạng 1.3 Kiểm tra xem các đại lượng có tỉ lệ nghịch với nhau không? – Trong mỗi công thức k y x (k khác 0), với mỗi giá trị của x cho tương ứng một giá trị của y. – Kiểm tra nếu có tỉ lệ 1 2 x y k thì hai đại lượng y và x tỉ lệ nghịch với nhau. Dạng 1.4 Lập bảng giá trị tương ứng của hai đại lượng tỉ lệ nghịch và xét tương quan tỉ lệ nghịch giữa hai đại lượng khi biết bảng giá trị tương ứng của chúng. – Để lập bảng giá trị tương ứng của hai đại lượng tỉ lệ nghịch ta thực hiện theo hai bước sau: + Bước 1. Xác định hệ số tỉ lệ k. + Bước 2. Dùng công thức xy k tìm các giá trị tương ứng của x và y. – Để xét tương quan tỉ lệ nghịch giữa hai đại lượng khi biết bảng giá trị tương ứng của chúng. Ta xét xem tất cả tích các giá trị tương ứng của hai đại lượng có bằng nhau hay không: + Nếu tích bằng nhau thì các đại lượng tỉ lệ nghịch. + Nếu tích không bằng nhau thì các đại lượng không tỉ lệ nghịch. Dạng 2 . Một số bài toán tỉ lệ nghịch. 1. Bài toán về hai đại lượng tỉ lệ nghịch. – Để giải bài toán dạng này ta thực hiện theo các bước sau: + Bước 1: Xác định rõ các đại lượng và quan hệ giữa chúng là hai đại lượng tỉ lệ nghịch. + Bước 2: Áp dụng công thức liên hệ và tính chất của hai đại lượng tỉ lệ nghịch, tính chất dãy tỉ số bằng nhau để giải quyết bài toán. 2. Bài toán tìm hai số biết chúng tỉ lệ nghịch với a và b. – Giả sử cần tìm hai số x và y biết chúng tỉ lệ nghịch với a và b (a và b là các số đã biết). Khi đó ta có ax by. Từ đó dựa vào điều kiện của x và y ta áp dụng tính chất dãy tỉ số bằng nhau một cách hợp lý để giải quyết bài toán. – Chú ý: Nếu hai số x và y tỉ lệ nghịch với a và b thì hai số x và y tỉ lệ thuận với 1 a và 1 b. Dạng 2.1 Bài toán về hai đại lượng tỉ lệ nghịch. – Để giải bài toán dạng này ta thực hiện theo các bước sau: + Bước 1: Xác định rõ các đại lượngvà đặt ẩn phụ cho các đại lượng nếu cần. + Bước 2: Xác định quan hệ tỉ lệ nghịch giữa hai đại lượng tỉ lệ nghịch. + Bước 3: Áp dụng công thức liên hệ và tính chất của hai đại lượng tỉ lệ nghịch, tính chất dãy tỉ số bằng nhau để giải quyết bài toán. Dạng 2.2 Bài toán về nhiều đại lượng tỉ lệ nghịch. – Giả sử cần tìm hai số x y z t tỉ lệ nghịch với các số a b c d. Khi đó ta có ax by cz dt. – Tìm BCNN (a b c d e) rồi chia quan hệ ax by cz dt cho số vừa tìm được. – Áp dụng tính chất của dãy tỉ số bằng nhau rút x y z t. PHẦN III . BÀI TẬP TỰ LUYỆN.

Nguồn: toanmath.com

Đọc Sách

Lý thuyết và bài tập lớp 7 môn Toán Nguyễn Cao Cường
Nội dung Lý thuyết và bài tập lớp 7 môn Toán Nguyễn Cao Cường Bản PDF - Nội dung bài viết Lý thuyết và bài tập lớp 7 môn Toán Nguyễn Cao Cường Lý thuyết và bài tập lớp 7 môn Toán Nguyễn Cao Cường Tài liệu này bao gồm 59 trang với nội dung lý thuyết và bài tập chương trình Toán lớp 7 dành cho học sinh khá – giỏi. Các chủ điểm trong tài liệu bao gồm: SỐ HỮU TỈ – SỐ THỰC 1.1 Tập hợp Q các số hữu tỉ Trong phần này, học sinh sẽ tìm hiểu về số hữu tỉ, biểu diễn chúng trên trục số, so sánh hai số hữu tỉ và thực hành bài tập. 1.2 Cộng trừ số hữu tỉ Học sinh sẽ học cách cộng và trừ số hữu tỉ, cộng và trừ số thập phân, sử dụng quy tắc chuyển vế và thực hành bài tập. 1.3 Nhân, chia số hữu tỉ Ở phần này, học sinh sẽ được hướng dẫn cách nhân và chia số hữu tỉ, tính chất của phép nhân trong Q, chia một tổng hoặc một hiệu cho một số và thực hành bài tập. 1.4 Giá trị tuyệt đối của một số hữu tỉ Học sinh sẽ nắm vững khái niệm về giá trị tuyệt đối của một số hữu tỉ và thực hành bài tập. 1.5 Lũy thừa của một số hữu tỉ Trong phần này, học sinh sẽ học về lũy thừa với số mũ tự nhiên, các tính chất của lũy thừa, lũy thừa của một số mũ âm và thực hành bài tập. 1.6 Tỉ lệ thức Học sinh sẽ định nghĩa tỉ lệ thức, tìm hiểu các tính chất của tỉ lệ thức, số tỉ lệ và thực hành bài tập trong phần này. 1.7 Số thập phân hữu hạn. Số thập phân vô hạn tuần hoàn Phần này sẽ giúp học sinh hiểu về số thập phân hữu hạn và số thập phân vô hạn tuần hoàn, kèm theo bài tập luyện tập. 1.8 Làm tròn số Học sinh sẽ được hướng dẫn cách làm tròn số và thực hành bài tập để nắm vững kỹ năng này. 1.9 Căn bậc hai. Số vô tỉ. Số thực Trong phần này, học sinh sẽ hiểu rõ về căn bậc hai, số vô tỉ và số thực, cùng với bài tập luyện tập. ĐƯỜNG THẲNG VUÔNG GÓC. ĐƯỜNG THẲNG SONG SONG 2.1 Hai góc đối đỉnh Học sinh sẽ tìm hiểu về hai góc đối đỉnh và thực hành bài tập liên quan. 2.2 Hai đường thẳng vuông góc Trong phần này, học sinh sẽ nắm vững định nghĩa, đường trung trực của đoạn thẳng và thực hành bài tập. 2.3 Các góc tạo bởi một đường thẳng cắt hai đường thẳng khác Học sinh sẽ tìm hiểu về các góc tạo bởi một đường thẳng cắt hai đường thẳng khác và thực hành bài tập. 2.4 Hai đường thẳng song song Ở phần này, học sinh sẽ được nhắc lại kiến thức từ lớp 6, dấu hiệu nhận biết hai đường thẳng song song, tiên đề Ô-clit về hai đường thẳng song song và thực hành bài tập. 2.5 Luyện tập chung Phần này sẽ giúp học sinh luyện tập và củng cố kiến thức đã học từ các chủ điểm trước đó.