Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối học kì 2 Toán 9 năm 2023 - 2024 phòng GDĐT Ba Vì - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kì 2 môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Ba Vì, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Tư ngày 24 tháng 04 năm 2024. Trích dẫn Đề cuối học kì 2 Toán 9 năm 2023 – 2024 phòng GD&ĐT Ba Vì – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai vòi nước cùng chảy vào một bể không có nước thì sau 8 giờ đầy bể. Nếu chỉ mở vòi thứ nhất trong 3 giờ rồi khóa lại và mở vòi thứ hai trong 6 giờ thì cả hai vòi chảy được 1/2 bể. Hỏi nếu mở riêng từng vòi thì thời gian để mỗi vòi chảy đầy bể là bao nhiêu? + Một hộp sữa hình trụ, đáy của hộp sữa là một hình tròn có đường kính 0,13 m, chiều cao của hộp sữa là 0,17 m. Tính diện tích xung quanh của hộp sữa? (Lấy pi ~ 3,14 và kết quả lấy đến hai chữ số phần thập phân). + Cho parabol (P): y = -x2 và đường thẳng (d): y = (2m – 1)x – (m + 2) (với m là tham số). a) Chứng minh rằng với mọi m đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt. b) Tìm các giá trị của m để đường thẳng (d) cắt (P) tại hai điểm phân biệt nằm cùng phía đối với trục tung.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 (HK2) lớp 9 môn Toán năm học 2016 2017 sở GD và ĐT Thái Bình
Nội dung Đề thi học kì 2 (HK2) lớp 9 môn Toán năm học 2016 2017 sở GD và ĐT Thái Bình Bản PDF - Nội dung bài viết Đề thi học kì 2 (HK2) lớp 9 môn Toán năm học 2016-2017 sở GD và ĐT Thái Bình Đề thi học kì 2 (HK2) lớp 9 môn Toán năm học 2016-2017 sở GD và ĐT Thái Bình Đề thi học kì 2 môn Toán lớp 9 năm học 2016 - 2017 của sở GD và ĐT Thái Bình bao gồm 5 bài toán tự luận, mỗi bài toán đều có lời giải chi tiết. Một trong những bài toán được trích dẫn trong đề là: + Cho nửa đường tròn có đường kính BC, A là điểm thuộc nửa đường tròn sao cho AB < AC (A khác B). Trên dây cung AC lấy điểm E khác A và C; gọi D, H là hình chiếu vuông góc của A lên BC và BE. 1. Chứng minh hai góc BAD và BHD bằng nhau. 2. Chứng minh BH.CE = BC.DH. 3. Gọi K là giao điểm của DH và AC, phân giác góc CKD cắt HE, CD tại M và N; phân giác góc CBE cắt DH, CE tại P và Q. Chứng minh tam giác KPQ cân và tứ giác MPNQ là hình thoi. Đề thi này đòi hỏi kiến thức và kỹ năng phân tích, suy luận của học sinh. Bằng cách giải quyết các bài toán này, học sinh sẽ phát triển khả năng tư duy logic và sáng tạo trong việc giải quyết vấn đề. Chắc chắn rằng việc tham gia vào việc giải các bài toán trong đề thi này sẽ giúp học sinh rèn luyện kỹ năng toán học một cách hiệu quả.