Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu Toán 9 chủ đề hệ hai phương trình bậc nhất hai ẩn

Tài liệu gồm 11 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập chủ đề hệ hai phương trình bậc nhất hai ẩn trong chương trình môn Toán 9, có đáp án và lời giải chi tiết. A. Tóm tắt lý thuyết. 1. Khái niệm hệ phương trình bậc nhất hai ẩn. – Hệ phương trình bậc nhất hai ẩn là hệ phương trình có dạng: ax by c ax by c. Trong đó: aba b là các số thực cho trước và 22 2 2 ab a b 0 0 và x y là ẩn. – Nếu hai phương trình (1) (2) có nghiệm chung (x y 0 0) thì (x y 0 0) gọi là nghiệm của hệ phương trình. – Nếu hai phương trình (1) (2) không có nghiệm chung thì hệ phương trình vô nghiệm. – Giải hệ phương trình là tìm tất cả các nghiệm của nó (tập nghiệm). 2. Minh họa hình học tập nghiệm của hệ phương trình bậc nhất hai ẩn. Xét hệ phương trình: ax by c d ax by c d. – Tập nghiệm của hệ phương trình bậc nhất hai ẩn được biểu diễn bởi tập hợp các điểm chung của hai đường thẳng (d ax by c) và (d ax by c). +) TH1: Nếu d cắt d’ thì hệ phương trình có một nghiệm duy nhất. +) TH2: d // d’ thì hệ phương trình vô nghiệm. +) TH3: d ≡ d’ thì hệ phương trình có vô số nghiệm. 3. Tổng quát. Xét hệ phương trình: ax by c a b c ax by c a b c. – Hệ phương trình có nghiệm duy nhất a a b b. – Hệ phương trình vô nghiệm a a b c b c. – Hệ phương trình có vô số nghiệm a a b c b c. 4. Hệ phương trình tương đương. Hai hệ phương trình được gọi là tương đương với nhau nếu chúng có cùng tập nghiệm. B. Bài tập và các dạng toán. Dạng 1 : không giải hệ phương trình dự đoán số nghiệm của hệ phương trình bậc nhất hai ẩn. Cách giải: Xét hệ phương trình: ax by c a b c ax by c a b c. – Hệ phương trình có nghiệm duy nhất a b a b. – Hệ phương trình vô nghiệm abc abc. – Hệ phương trình có vô số nghiệm abc abc. Dạng 2 : Kiểm tra một cặp số cho trước có phải là nghiệm của hệ phương trình bậc nhất hai ẩn hay không? Cách giải: Cặp số (x y 0 0) là nghiệm của hệ phương trình: ax by c a b c ax by c a b c khi và chỉ khi nó thỏa mãn cả hai phương trình của hệ. Dạng 3 : Giải hệ phương trình bằng phương pháp đồ thị. Cách giải: + Bước 1: Vẽ hai đường thẳng (d ax by c d a x b y c) trên cùng một hệ trục tọa độ. + Bước 2: Xác định nghiệm của hệ phương trình dựa vào đồ thị đã vẽ ở bước 1. BÀI TẬP TRẮC NGHIỆM. BÀI TẬP VỀ NHÀ.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề liên hệ giữa phép nhân phép chia và phép khai phương
Nội dung Chuyên đề liên hệ giữa phép nhân phép chia và phép khai phương Bản PDF - Nội dung bài viết Tài liệu tổng hợp kiến thức chuyên đề liên hệ giữa phép nhân phép chia và phép khai phương Tài liệu tổng hợp kiến thức chuyên đề liên hệ giữa phép nhân phép chia và phép khai phương Tài liệu này bao gồm 37 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, nhằm hỗ trợ học sinh trong quá trình học tập chương trình Đại số 9, chương 1 bài số 3-4. Tác phẩm tập trung vào các kiến thức trọng tâm và cung cấp hướng dẫn chi tiết về cách giải các dạng bài tập tự luận và trắc nghiệm trong chuyên đề liên kết giữa phép nhân/phép chia và phép khai phương. Đặc điểm nổi bật của tài liệu bao gồm: - Phần Kiến thức trọng tâm: cung cấp kiến thức cần thiết cho học sinh hiểu rõ chuyên đề. - Các dạng toán: bao gồm các dạng toán từ cơ bản đến nâng cao, từ thực hiện phép tính đến giải phương trình, giúp phát triển tư duy toán học. - Trắc nghiệm rèn phản xạ: cung cấp bài tập trắc nghiệm để học sinh rèn luyện khả năng phản xạ và xử lý tình huống trong giải toán.
Chuyên đề nhắc lại và bổ sung các khái niệm về hàm số
Nội dung Chuyên đề nhắc lại và bổ sung các khái niệm về hàm số Bản PDF - Nội dung bài viết Chuyên đề hàm số trong toán học Chuyên đề hàm số trong toán học Trong chuyên đề này, chúng ta sẽ cùng nhau tìm hiểu và bổ sung kiến thức về hàm số, một khái niệm quan trọng trong toán học. Hàm số là một mối quan hệ giữa các biến số x và y, trong đó với mỗi giá trị của x, ta luôn tìm được một giá trị tương ứng của y. Điều kiện xác định của hàm số là tất cả các giá trị của x khi thực hiện biểu thức hàm số, ta được kết quả có ý nghĩa. Đồ thị của hàm số là tập hợp các điểm M(x;y) trong mặt phẳng Oxy, thỏa mãn phương trình y = f(x). Chúng ta cũng sẽ tìm hiểu về hàm số đồng biến và hàm số nghịch biến. Hàm số đồng biến là khi giá trị của biến x tăng thì giá trị của hàm số cũng tăng, trong khi hàm số nghịch biến lại ngược lại. Ta cũng sẽ thực hành các dạng bài tập cơ bản và nâng cao như tính giá trị của hàm số, biểu diễn điểm trên mặt phẳng, xét sự đồng biến và nghịch biến, cũng như phát triển tư duy. Cuối cùng, chúng ta sẽ có cơ hội tự luyện và rèn luyện phản xạ thông qua các bài tập trắc nghiệm. Đây sẽ là cơ hội tuyệt vời để củng cố kiến thức và kỹ năng trong chương trình Đại số lớp 9 chương 2 bài số 1. Hãy chuẩn bị tinh thần và cùng nhau khám phá thế giới của hàm số trong toán học nhé!
Chứng minh tứ giác nội tiếp, chứng minh các điểm cùng thuộc một đường tròn
Nội dung Chứng minh tứ giác nội tiếp, chứng minh các điểm cùng thuộc một đường tròn Bản PDF - Nội dung bài viết Chứng minh tứ giác nội tiếp và điểm cùng thuộc đường tròn Chứng minh tứ giác nội tiếp và điểm cùng thuộc đường tròn Tài liệu này bao gồm 18 trang, cung cấp hướng dẫn cụ thể về cách chứng minh tứ giác nội tiếp và cách chứng minh các điểm cùng thuộc một đường tròn. Đây là một dạng bài toán thường gặp trong chương trình Hình học 9 và trong các bài toán khó hơn. Việc này giúp học sinh hiểu rõ hơn về tính chất và cách xác định tứ giác nội tiếp, cũng như cách chứng minh các điểm cùng thuộc một đường tròn. Hướng dẫn trong tài liệu được trình bày một cách dễ hiểu và chi tiết, giúp người đọc nắm bắt được bản chất của vấn đề và áp dụng vào thực hành một cách linh hoạt.