Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán cấp tỉnh năm 2022 2023 sở GD ĐT Gia Lai

Nội dung Đề học sinh giỏi lớp 9 môn Toán cấp tỉnh năm 2022 2023 sở GD ĐT Gia Lai Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 9 cấp tỉnh năm 2022 - 2023 Đề học sinh giỏi Toán lớp 9 cấp tỉnh năm 2022 - 2023 Chúng tôi xin giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 cấp tỉnh năm học 2022 – 2023 do sở Giáo dục và Đào tạo tỉnh Gia Lai tổ chức. Kỳ thi diễn ra vào ngày 14 tháng 02 năm 2023, bao gồm đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một số câu hỏi trong đề: Cho hàm số \(y = mx^2 + 8\), có đồ thị là đường thẳng \(d\). Tìm tất cả các giá trị của tham số \(m\) để đường thẳng \(d\) cắt trục hoành và trục tung tại các điểm A và B sao cho diện tích tam giác OAB bằng 2 (với O là gốc tọa độ). Cho hai vòi nước chảy vào 1 bồn nước. Nếu cho vòi thứ nhất chảy vào bồn rỗng trong 3 giờ rồi dừng lại, sau đó cho vòi thứ hai chảy tiếp vào trong 8 giờ nữa thì đầy bồn. Nếu cho vòi thứ nhất chảy vào bồn rỗng trong 1 giờ rồi cho cả 2 vòi chảy tiếp trong 4 giờ nữa thì số nước đã chảy vào bằng 8/9 bồn. Hỏi nếu mỗi vòi chảy riêng thì trong bao lâu nước sẽ đầy bồn đó? Cho đường tròn O đường kính BC = R√2 và điểm A thay đổi trên đường tròn. Đường phân giác trong góc A của tam giác ABC cắt đường tròn O tại K. Hạ AH vuông góc với BC. a) Chứng minh rằng khi A thay đổi, tổng 2AH + KH luôn không đổi. Tính góc B của tam giác ABC biết 3AH = R. b) Đặt AH = x. Tìm x sao cho diện tích tam giác OAH đạt giá trị lớn nhất. Để tải file WORD, vui lòng click vào đường link ở đây: [đường link dẫn tới file WORD]

Nguồn: sytu.vn

Đọc Sách

Đề HSG Toán 9 cấp huyện năm 2019 - 2020 phòng GDĐT Sông Lô - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề HSG Toán 9 cấp huyện năm học 2019 – 2020 phòng GD&ĐT Sông Lô – Vĩnh Phúc; đề thi có đáp án + lời giải chi tiết  + thang chấm điểm. Trích dẫn đề HSG Toán 9 cấp huyện năm 2019 – 2020 phòng GD&ĐT Sông Lô – Vĩnh Phúc : + Qua điểm K nằm ngoài đường tròn (O;R), kẻ đường thẳng cắt đường tròn (O) tại A và B (A nằm giữa K và B, AB < 2R). Gọi d là đường trung trực của KB, H là hình chiếu của O trên d. Gọi I là trung điểm của OK, N là trung điểm của AB, M là giao điểm của d và KB. a) Chứng minh tứ giác OHMN là hình chữ nhật và AK = 2OH. b) Tính IH theo R. + Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm của AC. Đường thẳng qua A vuông góc với BM cắt BC tại D. Chứng minh DB C 2D. + Trên đường tròn cho 6 điểm phân biệt. Hai điểm bất kì trong 6 điểm này đều được nối với nhau bằng một đoạn thẳng màu xanh hoặc màu đỏ. Chứng minh rằng tồn tại một tam giác có ba cạnh cùng màu.
Đề khảo sát đội tuyển HSG Toán 9 năm 2019 - 2020 phòng GDĐT Sầm Sơn - Thanh Hoá
Đề khảo sát đội tuyển HSG Toán 9 năm 2019 – 2020 phòng GD&ĐT Sầm Sơn – Thanh Hoá gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào ngày 06 tháng 01 năm 2020, đề thi có lời giải chi tiết và bảng hướng dẫn chấm điểm. Trích dẫn đề khảo sát đội tuyển HSG Toán 9 năm 2019 – 2020 phòng GD&ĐT Sầm Sơn – Thanh Hoá : + Cho đường tròn (O;R) và dây cung BC cố định (BC < 2R). Điểm A di động trên (O;R) sao cho tam giác ABC là tam giác nhọn, AD là đường cao và H là trực tâm của tam giác ABC. a) Đường thẳng chứa tia phân giác ngoài của góc BHC cắt AB, AC lần lượt tại các điểm M, N. Chứng minh ∆AMN là tam giác cân b) Gọi E, F lần lượt là hình chiếu của D trên các đường thẳng BH, CH. Chứng minh: OA vuông góc EF. c) Đường tròn ngoại tiếp ∆AMN cắt đường phân giác trong của góc BAC tại K. Chứng minh đường thẳng HK luôn đi qua điểm cố định. + Tìm các số nguyên dương x, y, z với z 6 thỏa mãn phương trình sau: x 2 + y2 – 4x – 2y – 7z – 2 = 0 b) Cho số nguyên dương n thỏa mãn 2 2 12 1 2 n là số nguyên. Chứng minh 2 12 1 2 n là số chính phương. + Cho 3 số thực dương a, b, c thỏa mãn: abc = 1. Chứng minh bất đẳng thức.
Đề HSG Toán 9 cấp huyện năm 2018 - 2019 phòng GDĐT Yên Lạc - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề HSG Toán 9 cấp huyện năm 2018 – 2019 phòng GD&ĐT Yên Lạc – Vĩnh Phúc; đề thi có đáp án + lời giải chi tiết + thang điểm. Trích dẫn đề HSG Toán 9 cấp huyện năm 2018 – 2019 phòng GD&ĐT Yên Lạc – Vĩnh Phúc : + Cho các số thực x, y thoả mãn. Chứng minh rằng tích xy là một số không dương. + Cho tam giác ABC vuông tại A. Các đường trung tuyến AD và BE vuông góc với nhau tại G. Biết AB 6 cm, tính cạnh huyền BC. + Tổng của n số nguyên dương không nhất thiết phân biệt là 100. Tổng của 7 số trong số chúng nhỏ hơn 15. Tìm giá trị nhỏ nhất của n?
Đề học sinh giỏi huyện Toán 9 năm 2018 - 2019 phòng GDĐT Nậm Nhùn - Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2018 – 2019 phòng GD&ĐT Nậm Nhùn – Lai Châu; kỳ thi được diễn ra vào ngày 13 tháng 01 năm 2019.