Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề minh họa cuối học kì 2 Toán 11 năm 2023 - 2024 sở GDĐT Quảng Ngãi

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề minh họa kiểm tra cuối học kì 2 môn Toán 11 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Ngãi; đề thi được biên soạn theo cấu trúc 70% trắc nghiệm + 30% tự luận (theo điểm số), có ma trận, bảng đặc tả, đáp án và hướng dẫn chấm điểm. 1. HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT. + Lũy thừa với số mũ thực (2 tiết). + Lôgarit (2 tiết). + Hàm số mũ và hàm số lôgarit (1 tiết). + Phương trình, bất phương trình mũ và lôgarit (2 tiết). 2. QUAN HỆ VUÔNG GÓC TRONG KHÔNG GIAN. + Hai đường thẳng vuông góc (2 tiết). + Đường thẳng vuông góc với mặt phẳng (3 tiết). + Phép chiếu vuông góc. Góc giữa đường thẳng và mặt phẳng (2 tiết). + Hai mặt phẳng vuông góc (4 tiết). + Khoảng cách (3 tiết). + Thể tích (2 tiết). 3. XÁC SUẤT. + Biến cố hợp, biến cố giao, biến cố độc lập (3 tiết). + Công thức cộng xác suất (3 tiết). + Công thức nhân xác suất cho hai biến cố độc lập (2 tiết). 4. ĐẠO HÀM. + Đạo hàm và ý nghĩa của đạo hàm (2 tiết). + Các quy tắc tính đạo hàm (3 tiết). + Đạo hàm cấp hai (1 tiết).

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THCS THPT Trí Đức TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THCS THPT Trí Đức TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán lớp 11 năm học 2019 – 2020 trường THCS&THPT Trí Đức, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết.
Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Trưng Vương TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Trưng Vương TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán lớp 11 năm học 2019 – 2020 trường THPT Trưng Vương, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 11 năm 2019 – 2020 trường THPT Trưng Vương – TP HCM : + Tìm các đạo hàm của các hàm số sau. + Viết phương trình tiếp tuyến với đồ thị (C) của hàm số 3 y x x 3 tại điểm A. + Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân tại B và BC a; SA vuông góc mặt phẳng ABC và SA a 3. a/ Chứng minh: BC SAB. b/ Gọi M là trung điểm của đoạn AC. Chứng minh rằng SBM SAC. c/ Tính góc giữa hai mặt phẳng SBC và SAC. d/ Gọi G là trọng tâm tam giác ABC. Tính khoảng cách từ G đến mặt phẳng SBC.
Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Trường Chinh TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường THPT Trường Chinh TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán lớp 11 năm học 2019 – 2020 trường THPT Trường Chinh, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 11 năm 2019 – 2020 trường THPT Trường Chinh – TP HCM : + Cho hình chóp S.ABCD, đáy ABCD là hình vuông tâm O. SB ABCD và SD a AB a 3 BM vuông góc SC tại M. 1) Chứng minh rằng SAD SAB và tam giác SCD là tam giác vuông. 2) Chứng minh rằng AM là đường cao của tam giác SAC. 3) Tính góc giữa hai mặt phẳng (SAD) và (ABCD). + Viết phương trình tiếp tuyến của đồ thị biết tiếp tuyến song song với đường thẳng d y x 4 7. + Gọi 1 2 k k lần lượt là hệ số góc của các tiếp tuyến với đồ thị tại các điểm có hoành độ bằng 1 x và 2 x. Tìm m để 1 2 k k đạt giá trị lớn nhất biết rằng 1 2 x x là hai nghiệm của phương trình 2 2 2 1 0.
Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường Trương Vĩnh Ký TP HCM
Nội dung Đề thi học kì 2 (HK2) lớp 11 môn Toán năm 2019 2020 trường Trương Vĩnh Ký TP HCM Bản PDF Sytu giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán lớp 11 năm học 2019 – 2020 trường TH – THCS – THPT Trương Vĩnh Ký, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán lớp 11 năm 2019 – 2020 trường TH – THCS – THPT Trương Vĩnh Ký – TP HCM : + Cho hình chóp S.ABCD với đáy ABCD là hình vuông cạnh 2a và có tâm O. Cạnh bên SA a 2 và vuông góc mặt đáy (ABCD). a) Chứng minh: CD SAD. b) Chứng minh hai mặt phẳng (SAC) và (SBD) vuông góc với nhau. c) Tính số đo của góc hợp bởi đường thẳng SO và mặt đáy (ABCD). d) Tính khoảng cách giữa hai đường thẳng SO và BM với M là trung điểm SC. + Cho hàm số 3 2 2 y f x x mx m x m 2 3 có đồ thị là Cm. Gọi 1 k là hệ số góc của tiếp tuyến của đồ thị tại điểm có hoành độ bằng –1, gọi 2 k là hệ số góc của tiếp tuyến của đồ thị tại điểm có hoành độ bằng 0. Tìm m để tổng 1 2 k k đạt giá trị nhỏ nhất. + Viết phương trình tiếp tuyến của đồ thị (C) hàm số 4 2 y x x 3 2 tại điểm thuộc đồ thị có hoành độ 0 x 2.