Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG tỉnh lớp 12 môn Toán năm 2019 2020 sở GD ĐT Thừa Thiên Huế

Nội dung Đề thi chọn HSG tỉnh lớp 12 môn Toán năm 2019 2020 sở GD ĐT Thừa Thiên Huế Bản PDF Thứ Tư ngày 02 tháng 10 năm 2019, sở Giáo dục và Đào tạo tỉnh Thừa Thiên Huế tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh khối 12 năm học 2019 – 2020 môn Toán Phổ Thông, nhằm chọn ra những em học sinh xuất sắc, bổ sung vào đội tuyển học sinh giỏi Toán của tỉnh nhà, tham dự kỳ thi học sinh giỏi Toán cấp Quốc gia năm 2020. Đề thi chọn HSG tỉnh Toán lớp 12 năm 2019 – 2020 sở GD&ĐT Thừa Thiên Huế gồm có 06 bài toán tự luận, đề thi gồm có 01 trang, thời gian học sinh hoàn thành bài thi là 180 phút. Trích dẫn đề thi chọn HSG tỉnh Toán lớp 12 năm 2019 – 2020 sở GD&ĐT Thừa Thiên Huế : + Gọi S là tập hợp các số tự nhiên gồm ba chữ số đôi một khác nhau được chọn từ các chữ số 1; 2; 3; 4; 5; 6. Chọn ngẫu nhiên một số từ tập S. Tính xác suất để số được chọn có chữ số hàng đơn vị gấp đôi chữ số hàng trăm. [ads] + Trong mặt phẳng tọa độ Oxy, cho điểm E(3;4), đường thẳng d: x + y −1 = 0 và đường tròn (C): x^2 + y^2 + 4x − 2y − 4 = 0. Gọi M (m;1−m) là điểm nằm trên đường thẳng d và nằm ngoài đường tròn (C), từ M kẻ các tiếp tuyến MA, MB đến đường tròn (C) với A, B là các tiếp điểm. Gọi (E) là đường tròn tâm E và tiếp xúc với đường thẳng AB. a) Viết phương trình đường thẳng AB theo m. b) Tìm tọa độ điểm M sao cho đường tròn (E) có chu vi lớn nhất. + Cho hình chóp tứ giác đều S.ABCD có cạnh bên bằng a. Góc hợp giữa cạnh bên với mặt đáy bằng α. a) Tính thể tích khối chóp S.ABCD theo a và α. b) Giả sử a không đổi, α thay đổi. Xác định α để thể tích khối chóp S.ABCD đạt giá trị lớn nhất.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG Toán 12 cấp tỉnh năm học 2018 - 2019 sở GDĐT Ninh Bình
Đề thi chọn HSG Toán 12 cấp tỉnh năm học 2018 – 2019 sở GD&ĐT Ninh Bình mã đề 132 được biên soạn nhằm tuyển chọn học sinh giỏi, học viên giỏi môn Toán lớp 12 cấp tỉnh khối THPT năm học 2018 – 2019, kỳ thi được diễn ra vào ngày 15 tháng 12 năm 2018, đề thi gồm 7 trang với 56 câu hỏi trắc nghiệm khách quan và 4 bài toán tự luận, thí sinh có 180 phút để hoàn thành đề thi này. Trích dẫn đề thi chọn HSG Toán 12 cấp tỉnh năm học 2018 – 2019 sở GD&ĐT Ninh Bình : + Một cơ sở sản xuất đồ gia dụng được đặt hàng làm các chiếc hộp kín hình trụ bằng nhôm để đựng rượu có thể tích là V = 28πa^3 (a > 0). Để tiết kiệm sản xuất và mang lại lợi nhuận cao nhất thì cơ sở sẽ sản xuất những chiếc hộp hình trụ có bán kính là R sao cho diện tích nhôm cần dùng là ít nhất. Tìm R. [ads] + Cho hình chóp S.ABC có SA = SB = SC và tam giác ABC vuông tại C. Gọi H là hình chiếu vuông góc của S lên mặt phẳng (ABC). Mệnh đề nào dưới đây đúng? A. H là trung điểm cạnh AB. B. H là trọng tâm tam giác ABC. C. H là trung điểm cạnh BC. D. H là trung điểm cạnh AC. + Vào ngày 15 hàng tháng ông An đều đến gửi tiết kiệm tại ngân hàng SHB số tiền 5 triệu đồng theo hình thức lãi kép với kì hạn 1 tháng, lãi suất tiết kiệm không đổi trong suốt quá trình gửi là 7,2%/năm. Hỏi sau đúng 3 năm kể từ ngày bắt đầu gửi ông An thu được số tiền cả gốc lẫn lãi là bao nhiêu (làm tròn đến nghìn đồng)?
Đề thi chọn HSG Toán 12 cấp cơ sở năm học 2018 - 2019 sở GD và ĐT Điện Biên
Đề thi chọn HSG Toán 12 cấp cơ sở năm học 2018 – 2019 sở GD và ĐT Điện Biên gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 180 phút, kỳ thi được diễn ra vào ngày 04/12/2018, đề thi có lời giải chi tiết. Trích dẫn đề thi chọn HSG Toán 12 cấp cơ sở năm học 2018 – 2019 sở GD và ĐT Điện Biên : + Cho hình chóp tứ giác đều S.ABCD có AB = a, SA = a√3. Gọi O là giao điểm của AC và BD, G là trọng tâm tam giác SCD. Tính thể tích khối chóp S.OGC. Tính khoảng cách từ G đến mặt phẳng (SBC). Tính cosin góc giữa hai đường thẳng SA và BG. + Trong mặt phẳng tọa độ Oxy cho hai điểm A(0;9), B(3;6). Gọi D là miền nghiệm của hệ phương trình 2x – y + a ≤ 0 và 6x + 3y + 5a ≥ 0. Tìm tất cả các giá trị của a để AB ⊂ D. + Gọi S là tập hợp tất cả các số tự nhiên có 5 chữ số khác nhau được chọn từ các số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9. Xác định số phần tử của S. Chọn ngẫu nhiên một số từ S, tính xác suất để số được chọn là số chẵn.
Đề thi chọn học sinh giỏi Toán 12 THPT năm 2018 - 2019 sở GD và ĐT Thái Bình
giới thiệu đến quý thầy, cô và các em đề thi chọn học sinh giỏi Toán 12 THPT năm 2018 – 2019 sở GD và ĐT Thái Bình, kỳ thi được diễn ra vào ngày 07 tháng 12 năm 2018, đề thi gồm 1 trang với 6 bài toán tự luận, học sinh làm bài trong thời gian 180 phút (không kể thời gian giám thị giao đề). Trích dẫn đề thi chọn học sinh giỏi Toán 12 THPT năm 2018 – 2019 sở GD và ĐT Thái Bình : + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh bằng 2/3, SA = a, SB = SC = SD = a/3. Gọi M là trung điểm của CD. Tính thể tích của khối chóp S.ABCM. Tính khoảng cách giữa SM và BC. [ads] + Trong mặt phẳng tọa độ Oxy, cho hình vuông ABCD, điểm M(1;0) là trung điểm của cạnh BC, điểm N thuộc cạnh CD sao cho CN = 2ND, phương trình đường thẳng AN là: x – y + 2 = 0. Tìm tọa độ điểm A biết điểm A có hoành độ dương. + Cho hàm số y = x^3 + 2(m + 1)x^2 + (8m – 3)x + 8m – 6. Tìm m để hàm số có cực đại, cực tiểu trong đó một điểm cực trị của đồ thị hàm số thuộc góc phần tư thứ hai, một điểm cực trị thuộc góc phần tư thứ tư của hệ trục tọa độ Oxy.
Đề thi chọn HSG Toán cấp tỉnh THPT năm 2018 sở GD và ĐT Quảng Ninh (Bảng A)
Sáng ngày 04 tháng 12 năm 2018, sở Giáo dục và Đào tạo tỉnh Quảng Ninh đã tổ chức kỳ thi học sinh giỏi môn Toán cấp tỉnh dành cho khối THPT năm học 2018 – 2019. Đề thi chọn HSG Toán cấp tỉnh THPT năm 2018 sở GD và ĐT Quảng Ninh (Bảng A) gồm 1 trang với 6 bài toán tự luận, thí sinh có 180 phút để làm bài thi (không tính thời gian phát đề). Trích dẫn đề thi chọn HSG Toán cấp tỉnh THPT năm 2018 sở GD và ĐT Quảng Ninh (Bảng A) : + Trong cuộc thi văn nghệ do Đoàn thanh niên trường THPT X, tỉnh Quảng Ninh tổ chức vào tháng 11 năm 2018 với thể lệ mỗi lớp tham gia một tiết mục. Kết quả có 12 tiết mục đạt giải trong đó: có 4 tiết mục khối 12, có 5 tiết mục khối 11 và 3 tiết mục khối 10. Ban tổ chức chọn ngẫu nhiên 5 tiết mục biểu diễn chào mừng ngày 20 tháng 11 (không tính thứ tự biểu diễn). Tính xác suất sao cho khối nào cũng có tiết mục được biểu diễn và trong đó có ít nhất hai tiết mục của khối 12. [ads] + Nhà bạn An muốn đặt thợ làm một bể cá, nguyên liệu bằng kính trong suốt, không có nắp đậy dạng hình hộp chữ nhật có thể tích chứa được 400000 (cm) nước. Biết rằng chiều cao của bể gấp 2 lần chiều rộng của bể. Xác định diện tích đáy của bể cá để tiết kiệm nguyên vật liệu nhất. + Trong mặt phẳng với hệ trục tọa độ Oxy, cho tam giác ABC có 3 góc đều nhọn. Gọi H là trực tâm của tam giác ABC; M, N, P lần lượt là giao điểm của AH, BH, CH với đường tròn ngoại tiếp tam giác ABC. Tìm tọa độ trực tâm H của tam giác ABC.