Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giữa học kì 1 (HK1) lớp 9 môn Toán năm 2022 2023 trường THCS Lê Quý Đôn TP HCM

Nội dung Đề thi giữa học kì 1 (HK1) lớp 9 môn Toán năm 2022 2023 trường THCS Lê Quý Đôn TP HCM Bản PDF - Nội dung bài viết Đề thi giữa học kì 1 (HK1) lớp 9 môn Toán năm 2022 - 2023 trường THCS Lê Quý Đôn TP HCM Đề thi giữa học kì 1 (HK1) lớp 9 môn Toán năm 2022 - 2023 trường THCS Lê Quý Đôn TP HCM Sytu xin được giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kỳ 1 môn Toán lớp 9 năm học 2022 - 2023 trường THCS Lê Quý Đôn, TP HCM. Kỳ thi sẽ diễn ra vào thứ Hai ngày 31 tháng 10 năm 2022. Đề thi bao gồm các câu hỏi sau: + Rút gọn biểu thức A. + Đứng trên đỉnh ngọn hải đăng quan sát anh Tuấn nhìn thấy một chiếc thuyền đánh cá đang trôi thẳng về phía ngọn hải đăng với góc hạ 30°. Một lúc sau anh quan sát lại chiếc thuyền trên với góc hạ 45°. Biết khi đó khoảng cách giữa tầm mắt của anh với mặt biển là 75 mét. Hỏi giữa hai lần quan sát thì thuyền đã trôi được bao nhiêu mét? (Làm tròn đến hàng đơn vị). + Cho tam giác MNP vuông tại M, đường cao MK. Biết MN = 16cm, NP = 20cm. Tính MP, MK. Đây là một bài thi thú vị đòi hỏi học sinh phải áp dụng kiến thức toán học để giải quyết các vấn đề thực tế. Chúc các em học sinh đạt kết quả cao trong kỳ thi này!

Nguồn: sytu.vn

Đọc Sách

Đề giữa học kì 1 Toán 9 năm 2022 - 2023 phòng GDĐT Bình Giang - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 1 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Bình Giang, tỉnh Hải Dương; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề giữa học kì 1 Toán 9 năm 2022 – 2023 phòng GD&ĐT Bình Giang – Hải Dương : + Cho tam giác ABC, BC = 6cm, 0 B 60, AB = 4cm, kẻ đường cao AH H BC. Tính: 1) AH, HB, AC (Độ dài đoạn thẳng không cần làm tròn số) 2) Số đo các góc ACB, BAC (Số đo góc làm tròn đến độ, học sinh được sử dụng máy tính cầm tay hoặc bảng số). + Cho các số x, y, z không âm. Chứng minh rằng: 3 33 xyz xyz.
Đề giữa kỳ 1 Toán 9 năm 2022 - 2023 trường THCS Nguyễn Du - Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kỳ 1 môn Toán 9 năm học 2022 – 2023 trường THCS Nguyễn Du, huyện Diên Khánh, tỉnh Khánh Hòa; đề thi được biên soạn theo hình thức 30% trắc nghiệm + 70% tự luận, thời gian học sinh làm bài thi là 90 phút.
Đề giữa kì 1 Toán 9 năm 2022 - 2023 trường THCS Phương Mai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 1 môn Toán 9 năm học 2022 – 2023 trường THCS Phương Mai, quận Đống Đa, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 05 tháng 11 năm 2022. Trích dẫn Đề giữa kì 1 Toán 9 năm 2022 – 2023 trường THCS Phương Mai – Hà Nội : + Tính chiều cao của một cột tháp (làm tròn đến mét), biết rằng lúc tia sáng của mặt trời tạo với phương nằm ngang của mặt đất một góc bằng 51° thì bóng của nó trên mặt đất dài 48m (làm tròn đến mét). + Cho tam giác ABC vuông tại A (AB < AC), đường cao AH (H thuộc BC). Vẽ HM vuông góc với AB tại M, HN vuông góc với AC tại N. a) Cho biết AB = 6cm, AC = 8cm. Tính các độ dài BC, AH và số đo các góc B, C. b) Chứng minh AM.AB = AN.AC. c) Qua A kẻ đường thẳng vuông góc với MN cắt BC tại D. Chứng minh D là trung điểm của BC. + Cho các số thực dương a, b thỏa mãn ab > 2021a + 2022b. Chứng minh: a + b > (2021 + 2022)2.
Đề giữa kì 1 Toán 9 năm 2022 - 2023 trường THCS Trần Đăng Ninh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 1 môn Toán 9 năm học 2022 – 2023 trường THCS Trần Đăng Ninh, quận Hà Đông, thành phố Hà Nội. Trích dẫn Đề giữa kì 1 Toán 9 năm 2022 – 2023 trường THCS Trần Đăng Ninh – Hà Nội : + Một chiếc máy bay cất cánh theo một góc 25° so với mặt đất. Hỏi muốn đạt độ cao 2000 m thì máy bay phải bay một đoạn đường là bao nhiêu mét? (làm tròn kết quả đến chữ số thập phân thứ nhất). + Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). a) Biết AB = 12cm, BC = 20cm. Tính AC, AH và ABC (làm tròn đến độ); b) Kẻ HM vuông góc với AB tại M, HN vuông góc với AC tại N. Chứng minh: AH = MN và AM.MB + AN.NC = AH2.