Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phương trình nghiệm nguyên chọn lọc

Tài liệu gồm 218 trang, tuyển tập các chủ đề phương trình nghiệm nguyên chọn lọc, giúp học sinh ôn tập để chuẩn bị cho kỳ thi chọn học sinh giỏi Toán bậc THCS các cấp và ôn thi vào lớp 10 môn Toán. MỤC LỤC : Phần 1 MỘT SỐ PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN 1. 1 PHƯƠNG PHÁP XÉT TÍNH CHIA HẾT 2. A Phương pháp phát hiện tính chia hết của một ẩn 2. B Phương pháp đưa về phương trình ước số 2. C Phương pháp biểu thị một ẩn theo ẩn còn lại rồi dùng tính chia hết 3. D Phương pháp xét số dư của từng vế 4. 2 PHƯƠNG PHÁP DÙNG BẤT ĐẲNG THỨC 8. A Phương pháp sắp thứ tự các ẩn 8. B Phương pháp xét từng khoảng giá trị của ẩn 9. C Phương pháp chỉ ra nghiệm nguyên 10. D Phương pháp sử dụng điều kiện để phương trình bậc hai có nghiệm 10. 3 PHƯƠNG PHÁP DÙNG TÍNH CHẤT CỦA SỐ CHÍNH PHƯƠNG 17. A Sử dụng tính chất về chia hết của số chính phương 17. B Tạo ra bình phương đúng 17. C Tạo ra tổng các số chính phương 18. D Xét các số chính phương liên tiếp 18. E Sử dụng điều kiện biệt số ∆ là số chính phương 19. F Sử dụng tính chất: 20. G Sử dụng tính chất: 21. 4 PHƯƠNG PHÁP LÙI VÔ HẠN, NGUYÊN TẮC CỰC HẠN 28. Phần 2 MỘT SỐ DẠNG PHƯƠNG TRÌNH NGHIỆM NGUYÊN 32. 1 PHƯƠNG TRÌNH MỘT ẨN 32. 2 PHƯƠNG TRÌNH BẬC NHẤT VỚI HAI ẨN 35. A Cách giải phương trình bậc nhất hai ẩn ax + by = c với nghiệm nguyên (a, b, c thuộc Z) 36. 3 PHƯƠNG TRÌNH BẬC HAI VỚI HAI ẨN 39. 4 PHƯƠNG TRÌNH BẬC BA HAI ẨN 57. 5 PHƯƠNG TRÌNH BẬC BỐN VỚI HAI ẨN 66. 6 PHƯƠNG TRÌNH ĐA THỨC VỚI BA ẨN TRỞ LÊN 76. 7 PHƯƠNG TRÌNH PHÂN THỨC 85. 8 PHƯƠNG TRÌNH MŨ 93. 9 PHƯƠNG TRÌNH VÔ TỈ 104. 10 HỆ PHƯƠNG TRÌNH VỚI NGHIỆM NGUYÊN 114. 11 TÌM ĐIỀU KIỆN ĐỂ PHƯƠNG TRÌNH CÓ NGHIỆM NGUYÊN 118. Phần 3 BÀI TOÁN ĐƯA VỀ GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN 125. 1 BÀI TOÁN VỀ SỐ TỰ NHIÊN VÀ CÁC CHỮ SỐ 125. 2 BÀI TOÁN VỀ TÍNH CHIA HẾT VÀ SỐ NGUYÊN TỐ 138. 3 BÀI TOÁN THỰC TẾ 152. Phần 4 PHƯƠNG TRÌNH NGHIỆM NGUYÊN MANG TÊN CÁC NHÀ TOÁN HỌC 159. 1 THUẬT TOÁN EUCLIDE VÀ PHƯƠNG PHÁP TÌM NGHIỆM RIÊNG ĐỂ GIẢI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN 159. A Mở đầu 159. B Cách giải tổng quát 160. C Ví dụ 161. D Cách tìm một nghiệm riêng của phương trình ax + by = c 161. 2 PHƯƠNG TRÌNH PELL 166. A Mở đầu 166. B Phương trình Pell 166. 3 PHƯƠNG TRÌNH PYTHAGORE 170. A Mở đầu 170. 4 PHƯƠNG TRÌNH FERMAT 175. A Định lí nhỏ Fermat 175. B Định lí lớn Fermat 175. C Lịch sử về chứng minh định lí lớn Fermat 176. D Chứng minh định lí lớn Fermat với n=4 177. 5 PHƯƠNG TRÌNH DIONPHANTE 180. Phần 5 NHỮNG PHƯƠNG TRÌNH NGHIỆM NGUYÊN CHƯA CÓ LỜI GIẢI 182. 1 CÒN NHIỀU PHƯƠNG TRÌNH NGHIỆM NGUYÊN CHƯA GIẢI ĐƯỢC 182. A Phương trình bậc ba với hai ẩn 182. B Phương trình bậc bốn với hai ẩn 183. C Phương trình bậc cao với hai ẩn 183. D Phương trình với ba ẩn trở lên 184. 2 NHỮNG BƯỚC ĐỘT PHÁ 185. Phần 6 PHƯƠNG TRÌNH NGHIỆM NGUYÊN QUA CÁC KỲ THI 187. 1 Trong các đề thi vào lớp 10 187. 2 Trong các đề thi học sinh giỏi quốc gia và quốc tế 209.

Nguồn: toanmath.com

Đọc Sách

Các bài toán về số chính phương
Tài liệu gồm 69 trang, được trích đoạn từ cuốn sách Phân dạng và phương pháp giải toán số học và tổ hợp của tác giả Nguyễn Quốc Bảo, hướng dẫn giải các bài toán về số chính phương, giúp học sinh ôn tập thi học sinh giỏi Toán bậc THCS và luyện thi vào lớp 10 môn Toán. A. KIẾN THỨC CẦN NHỚ 1. Định nghĩa số chính phương. 2. Một số tính chất cần nhớ. B. CÁC DẠNG TOÁN THƯỜNG GẶP Dạng 1 : Chứng minh một số là số chính phương, hoặc là tổng nhiều số chính phương. Để chứng minh một số n là số là số chính phương ta thường dựa vào định nghĩa, tức là chứng minh n = k^2 (k thuộc Z). Dạng 2 : Chứng minh một số không là số chính phương. Để chứng minh n không là số chính phương, tùy vào từng bài toán ta có thể sử dụng các cách sau: 1) Chứng minh n không thể viết được dưới dạng một bình phương một số nguyên. 2) Chứng minh k2 < n < (k + 1)2 với k là số nguyên. 3) Chứng minh n có tận cùng là 2; 3; 7; 8. 4) Chứng minh n có dạng 4k + 2; 4k + 3. 5) Chứng minh n có dạng 3k + 2. 6) Chứng minh n chia hết cho số nguyên tố p mà không chia hết cho p2. Dạng 3 : Điều kiện để một số là số chính phương. Chúng ta thường sử dụng các phương pháp sau: + Phương pháp 1: Sử dụng định nghĩa. + Phương pháp 2: Sử dụng tính chẵn, lẻ. + Phương pháp 3: Sử dụng tính chất chia hết và chia có dư. + Phương pháp 4: Sử dụng các tính chất. Dạng 4 : Tìm số chính phương. Dựa vào định nghĩa về số chính phương A = k^2 với k là số nguyên và các yêu cầu của bài toán để tìm ra số chính phương thỏa bài toán. C. BÀI TẬP ÁP DỤNG D. HƯỚNG DẪN GIẢI – ĐÁP SỐ
Các bài toán về số nguyên tố và hợp số
Tài liệu gồm 44 trang, được trích đoạn từ cuốn sách Phân dạng và phương pháp giải toán số học và tổ hợp của tác giả Nguyễn Quốc Bảo, hướng dẫn giải các bài toán về số nguyên tố và hợp số, giúp học sinh ôn tập thi học sinh giỏi Toán bậc THCS và luyện thi vào lớp 10 môn Toán. A. KIẾN THỨC CẦN NHỚ 1. Định nghĩa số nguyên tố, hợp số. 2. Một số tính chất. 3. Phân tích một số ra thừa số nguyên tố. 4. Số nguyên tố cùng nhau. 5. Cách nhận biết số nguyên tố. B. MỘT SỐ DẠNG TOÁN SỐ NGUYÊN TỐ, HỢP SỐ + Dạng 1: Chứng minh một số là số nguyên tố hay hợp số. + Dạng 2: Chứng minh một số bài toán có liên quan đến tính chất của số nguyên tố. + Dạng 3: Tìm số nguyên tố thỏa mãn điều kiện nào đó. + Dạng 4: Nhận biết số nguyên tố, sự phân bố nguyên tố trong tập hợp số tự nhiên. + Dạng 5: Chứng minh có vô số số nguyên tố dạng ax + b (với x ∈ N và (a;b) = 1). + Dạng 6: Sử dụng nguyên lý Dirichlet trong bài toán số nguyên tố. + Dạng 7: Áp dụng định lý Fermat. C. BÀI TẬP ÁP DỤNG D. HƯỚNG DẪN GIẢI – ĐÁP SỐ
Các bài toán về quan hệ chia hết trong tập hợp số
Tài liệu gồm 95 trang, được trích đoạn từ cuốn sách Phân dạng và phương pháp giải toán số học và tổ hợp của tác giả Nguyễn Quốc Bảo, hướng dẫn giải các bài toán về quan hệ chia hết trong tập hợp số, giúp học sinh ôn tập thi học sinh giỏi Toán bậc THCS và luyện thi vào lớp 10 môn Toán. A. KIẾN THỨC CẦN NHỚ 1. Định nghĩa phép chia. 2. Một số tính chất cần nhớ. 3. Một số dấu hiệu chia hết. B. CÁC DẠNG TOÁN THƯỜNG GẶP + Dạng 1: Sử dụng tính chất trong n số nguyên liên tiếp có một và chỉ một số chia hết cho n (n ≥ 1). + Dạng 2: Phân tích thành nhân tử. + Dạng 3: Sử dụng phương pháp tách tổng. + Dạng 4: Sử dụng hằng đẳng thức. + Dạng 5: Sử dụng phương pháp xét số dư. + Dạng 6: Sử dụng phương pháp phản chứng. + Dạng 7: Sử dụng phương pháp quy nạp. + Dạng 8: Sử dụng nguyên lý Dirichlet. + Dạng 9: Xét đồng dư. + Dạng 10: Tìm điều kiện biến để chia hết. + Dạng 11: Các bài toán cấu tạo số liên quan đến tính chia hết của số tự nhiên. + Dạng 12: Các bài chia hết sử dụng định lý Fermat. + Dạng 13: Các bài toán chia hết liên quan đến đa thức. C. BÀI TẬP ÁP DỤNG D. HƯỚNG DẪN GIẢI – ĐÁP SỐ
Các bài toán về ước và bội
Tài liệu gồm 44 trang, được trích đoạn từ cuốn sách Phân dạng và phương pháp giải toán số học và tổ hợp của tác giả Nguyễn Quốc Bảo, hướng dẫn giải các bài toán về ước và bội, giúp học sinh ôn tập thi học sinh giỏi Toán bậc THCS và luyện thi vào lớp 10 môn Toán. A. KIẾN THỨC CẦN NHỚ I. Ước và bội. 1. Định nghĩa về ước và bội. 2. Tính chất. II. Ước chung và bội chung. 1. Định nghĩa. 2. Cách tìm ƯCLN và BCNN. 3. Tính chất. 4. Thuật toán Euclid trong việc tính nhanh ƯCLN và BCNN. 5. Phân số tối giản. B. CÁC DẠNG TOÁN THƯỜNG GẶP + Dạng 1: Các bài toán liên quan tới số ước của một số. + Dạng 2: Tìm số nguyên n để thỏa mãn điều kiện chia hết. + Dạng 3: Tìm số biết ƯCLN của chúng. + Dạng 4: Các bài toán phối hợp giữa BCNN của các số với ƯCLN của chúng. + Dạng 5: Các bài toán liên quan đến hai số nguyên tố cùng nhau. + Dạng 6: Các bài toán về phân số tối giản. + Dạng 7: Tìm ƯCLN của các biểu thức số. + Dạng 8: Liên hệ giữa phép chia có dư với phép chia hết, ƯCLN, BCNN. + Dạng 9: Tìm ƯCLN của hai số bằng thuật toán Ơ-clit. C. BÀI TẬP ÁP DỤNG D. HƯỚNG DẪN GIẢI – ĐÁP SỐ