Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 9 môn Toán lần 1 năm 2019 2020 trường Phạm Hồng Thái Hà Nội

Nội dung Đề khảo sát lớp 9 môn Toán lần 1 năm 2019 2020 trường Phạm Hồng Thái Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát lớp 9 môn Toán lần 1 năm 2019 2020 trường Phạm Hồng Thái Hà Nội Đề khảo sát lớp 9 môn Toán lần 1 năm 2019 2020 trường Phạm Hồng Thái Hà Nội Đề khảo sát lớp 9 môn Toán lần 1 năm học 2019-2020 của trường Phạm Hồng Thái ở Hà Nội là một bài kiểm tra quan trọng để đánh giá kiến thức và kỹ năng của học sinh trong môn Toán. Đề này đòi hỏi học sinh phải áp dụng kiến thức đã học vào việc giải quyết các bài tập và vấn đề, từ đó phản ánh được khả năng tư duy logic và sự hiểu biết sâu rộng của họ. Đề khảo sát được thiết kế với nhiều dạng bài tập khác nhau, từ bài tập trắc nghiệm đơn giản cho đến các bài toán phức tạp, giúp học sinh thử thách và phát triển kỹ năng giải quyết vấn đề. Ngoài ra, việc giữa các câu hỏi có mức độ khó tăng dần cũng giúp học sinh rèn luyện khả năng tư duy, cẩn thận và kiên nhẫn trong quá trình làm bài. Đề khảo sát lớp 9 môn Toán lần 1 năm học 2019-2020 của trường Phạm Hồng Thái Hà Nội là cơ hội để học sinh tự kiểm tra kiến thức, chuẩn bị tốt cho các kỳ thi quan trọng sắp tới. Nó cũng giúp giáo viên đánh giá năng lực của học sinh và điều chỉnh phương pháp giảng dạy phù hợp để hỗ trợ học sinh phát triển tốt nhất.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát đầu năm Toán 9 năm 2022 - 2023 trường THCS Xuân Đỉnh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng đầu năm môn Toán 9 năm học 2022 – 2023 trường THCS Xuân Đỉnh, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 29 tháng 09 năm 2022.
Đề khảo sát đầu năm Toán 9 năm 2022 - 2023 trường THCS Nam Từ Liêm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng đầu năm môn Toán 9 năm học 2022 – 2023 trường THCS Nam Từ Liêm, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Sáu ngày 07 tháng 10 năm 2022.
Đề kiểm tra Toán 9 tháng 9 năm 2022 hệ thống giáo dục Archimedes School - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng định kì môn Toán 9 tháng 9 năm 2022 hệ thống giáo dục Archimedes School, thành phố Hà Nội. Trích dẫn Đề kiểm tra Toán 9 tháng 9 năm 2022 hệ thống giáo dục Archimedes School – Hà Nội : + Hãy tính chiều cao của tháp Eiffel mà không cần lên tận đỉnh tháp khi biết góc tạo bởi tia nắng mặt trời với mặt đất là 74° và bóng của tháp trên mặt đất lúc đó là 86m (làm tròn kết quả tới hàng đơn vị). + Cho hàm số bậc nhất: y = (m + 1)x + 3 (d) với m khác -1. a) Vẽ đồ thị hàm số tại m = 1. b) Tìm m để đồ thị hàm số trên đi qua A(-1;-2). c) Tìm m để khoảng cách từ O(0;0) đến đường thẳng (d) bằng 3. + Cho nửa đường tròn (O), đường kính AB. Gọi C là điểm bất kì trên nửa đường tròn (O) (C khác A, C khác B). Từ C vẽ tia Ox là tiếp tuyến với nửa đường tròn (O). Từ O vẽ đường thẳng vuông góc với dây AC cắt tia Ox tại K. 1) Chứng minh KA là tiếp tuyến của nửa đường tròn (O). 2) Chứng minh bốn điểm K, A, O, C cùng thuộc một đường tròn. 3) Gọi H là hình chiếu vuông góc của C trên AB, D là điểm đối xứng với A qua C. I là trung điểm của CH. Gọi E là giao điểm của HD và BI. Chứng minh: HE.HD =HC2.
Đề kiểm tra chất lượng Toán 9 tháng 9 năm 2022 trường THCS Cầu Diễn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng môn Toán 9 tháng 9 năm học 2022 – 2023 trường THCS Cầu Diễn, quận Nam Từ Liêm, thành phố Hà Nội. Trích dẫn Đề kiểm tra chất lượng Toán 9 tháng 9 năm 2022 trường THCS Cầu Diễn – Hà Nội : + Giải bài toán bằng cách lập phương trình: Một tổ sản xuất theo kế hoạch mỗi ngày phải làm được 18 sản phẩm. Nhưng thực tế do cải tiến kĩ thuật, mỗi ngày tổ đã làm được thêm 4 sản phẩm nên đã hoàn thành công việc trước 3 ngày và còn vượt mức 14 sản phẩm. Tính số sản phẩm tổ đó phải làm theo kế hoạch. + Cho tam giác MNP vuông tại M có đường cao MH; HN = 9cm; HP = 16cm. a) Tính: MN; MP; MH? b) Gọi I, K lần lượt là hình chiếu vuông góc của H lên MN, MP. Tính IK? c) Tính diện tích tứ giác NIKP? + Cho các số thực dương a, b thỏa mãn: ab > 202la + 2022b. Chứng minh bắt đẳng thức: a + b > (2021 + 2022)^2.