Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh vào THPT năm học 2019 2020 sở GD ĐT Hà Nội

Nội dung Đề Toán tuyển sinh vào THPT năm học 2019 2020 sở GD ĐT Hà Nội Bản PDF - Nội dung bài viết Đề Toán tuyển sinh vào THPT năm học 2019 - 2020 sở GD ĐT Hà Nội Đề Toán tuyển sinh vào THPT năm học 2019 - 2020 sở GD ĐT Hà Nội Chiều Chủ Nhật ngày 02 tháng 06 năm 2019, Sở Giáo dục và Đào tạo thành phố Hà Nội đã tổ chức kỳ thi Toán tuyển sinh vào lớp 10 THPT năm học 2019 – 2020. Kỳ thi này nhằm mục đích đánh giá năng lực học tập môn Toán của các em học sinh một cách công bằng và chính xác, từ đó giúp các trường THPT trên địa bàn Hà Nội lựa chọn các học sinh phù hợp để chuẩn bị cho năm học mới. Đề Toán tuyển sinh vào lớp 10 THPT năm học 2019 – 2020 sở GD&ĐT Hà Nội đề cập đến 5 bài toán dạng tự luận. Đề thi bao gồm 1 trang, thời gian làm bài là 120 phút, cung cấp đáp án và lời giải chi tiết cho các bài toán. Trong số các bài toán, có một số bài như: Hai đội công nhân cùng làm một công việc, sau 15 ngày làm chung thì hoàn thành. Nếu đội thứ nhất làm riêng 3 ngày rồi dừng lại, đội thứ hai làm tiếp trong 5 ngày thì kết thúc được 25% công việc. Hỏi nếu mỗi đội làm riêng thì cần bao nhiêu ngày mới hoàn thành công việc đó? Cho biểu thức P = a^4 + b^4 - ab, với a, b là các số thực thỏa điều kiện a^2 + b^2 + ab = 3. Hãy tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P. Một bồn nước inox dạng hình trụ, chiều cao 1,75m và diện tích đáy 0,32m^2. Hỏi bồn nước này có thể chứa bao nhiêu mét khối nước khi đầy? Qua những bài toán này, các thí sinh sẽ được đánh giá về khả năng tư duy logic, tính toán và giải quyết vấn đề. Kỳ thi Toán tuyển sinh vào THPT năm học 2019 - 2020 sở GD&ĐT Hà Nội là cơ hội để các em thể hiện năng lực và chuẩn bị cho hành trình học tập tương lai.

Nguồn: sytu.vn

Đọc Sách

Đề thi vào 10 môn Toán (chung) năm 2021 - 2022 trường chuyên Lê Quý Đôn - Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán (chung) năm học 2021 – 2022 các trường PTDTNT và trường THPT chuyên Lê Quý Đôn, tỉnh Lai Châu; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 11 tháng 06 năm 2021. Trích dẫn đề thi vào 10 môn Toán (chung) năm 2021 – 2022 trường chuyên Lê Quý Đôn – Lai Châu : + Một ô tô khách và một ô tô tải chở vật liệu xây dựng khởi hành cùng một lúc từ bến xe khách Lai Châu đến trung tâm thị trấn Mường Tè. Do trọng tải lớn nên xe tải chở vật liệu xây dựng đi với vận tốc chậm hơn xe khách 10 km/h. Xe khách đến trung tâm thị trấn Mường Tè sớm hơn xe tải 1 giờ 6 phút. Tính vận tốc mỗi xe biết quãng đường từ bến xe khách thành phố Lai Châu đến trung tâm thị trấn Mường Tè là 132 km. + Cho đường tròn tâm (O;R), từ một điểm A trên đường tròn kẻ tiếp tuyến d với đường tròn tâm O. Trên đường thẳng d lấy điểm M bất kì (M khác A), kẻ tiếp tuyến thứ hai MB (B là tiếp điểm). a. Chứng minh tứ giác AMBO là tứ giác nội tiếp đường tròn. b. Gọi I là giao điểm của AB và OM. Chứng minh 2 2 4 AB OI OM R OI IM. c. Gọi điểm H là trục tâm của tam giác MAB. Tìm quỹ tích điểm H khi điểm M di chuyển trên đường thẳng d. + Giải các phương trình và hệ phương trình.
Đề thi vào 10 chuyên môn Toán (chuyên) năm 2021 - 2022 sở GDĐT Lâm Đồng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi vào 10 chuyên môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Lâm Đồng; kỳ thi được diễn ra vào ngày 9 – 10 – 11 tháng 06 năm 2021; đề thi có đáp án, lời giải chi tiết, hướng dẫn chấm và biểu điểm. Trích dẫn đề thi vào 10 chuyên môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Lâm Đồng : + Trường THCS X có 60 giáo viên. Tuổi trung bình của tất cả thầy giáo và cô giáo là 42 tuổi. Biết rằng tuổi trung bình của các thầy giáo là 50, tuổi trung bình của các cô giáo là 38. Hỏi trường THCS X có bao nhiêu thầy giáo, bao nhiêu cô giáo? + Cho hình vuông ABCD. Vẽ đường tròn tâm O đường kính BC và đường tròn A AB chúng cắt nhau tại một điểm thứ hai là E (E khác B). Tia CE cắt AD tại điểm F. Chứng minh rằng F là trung điểm của AD. + Cho hình bình hành ABCD có 0 BAD 90. Gọi H là chân đường vuông góc kẻ từ A đến BC. Đường trung tuyến kẻ từ C của tam giác ABC cắt đường tròn ngoại tiếp tam giác ABC tại K. Chứng minh rằng bốn điểm K H D C cùng thuộc một đường tròn.
Đề thi vào 10 chuyên môn Toán (chuyên) năm 2021 - 2022 sở GDĐT Kiên Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi vào 10 chuyên môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Kiên Giang; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 05 tháng 06 năm 2021. Trích dẫn đề thi vào 10 chuyên môn Toán (chuyên) năm 2021 – 2022 sở GD&ĐT Kiên Giang : + Có bốn căn phòng nằm liên tiếp nhau, thành một hàng ngang. Có một con chuột trốn trong các căn phòng đó; mỗi ngày nó trốn trong một căn phòng. Có một chú mèo tìm cách bắt con chuột này. Cứ mỗi tối, mèo ta vào một căn phòng, và nếu con chuột đang trốn ở căn phòng ấy thì nó sẽ bị mèo bắt. Biết rằng, nếu chưa bị mèo bắt mỗi sáng, con chuột lại chạy sang trốn ở căn phòng nằm ngay bên cạnh. Hỏi chú mèo có thể đảm bảo chắc chắn sẽ bắt được con chuột sau tối đa bốn tối hay không? Vì sao? + Cho hình vuông ABCD có cạnh bằng 8. Trên cạnh BC lấy điểm M sao cho BM 5. Gọi N là giao điểm của đường thẳng CD và đường thẳng vuông góc với AM tại A. Gọi I là trung điểm của MN. Hãy tính độ dài đoạn thẳng DI. + Cho O O 1 2 là hai đường tròn, cắt nhau tại điểm A M sao cho O AO 1 2 là góc tù. Tiếp tuyến tại A của O1 cắt O2 tại điểm thứ hai B (khác A). Tiếp tuyến tại A của O2 cắt O1 tại điểm thứ hai D (khác A). a) Trên cung AD không chứa M của O1, lấy điểm K, khác A và D, sao cho đường thẳng KM cắt cung AB không chứa M của O2 tại điểm L, khác A và B. Chứng minh rằng đường thẳng AK song song với đường thẳng BL. b) Gọi C là điểm đối xứng của A qua M. Chứng minh rằng ABCD là tứ giác nội tiếp.
Đề thi vào 10 môn Toán (chuyên) năm 2021 - 2022 trường chuyên Lê Quý Đôn - Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi vào 10 môn Toán (chuyên) năm 2021 – 2022 trường chuyên Lê Quý Đôn – Khánh Hòa; đề thi có đáp án, lời giải chi tiết, hướng dẫn chấm và biểu điểm. Trích dẫn đề thi vào 10 môn Toán (chuyên) năm 2021 – 2022 trường chuyên Lê Quý Đôn – Khánh Hòa : + Cho ABC vuông tại A. Các đường tròn O đường kính AB và I đường kính AC cắt nhau tại điểm thứ hai là H H A. Đường thẳng d thay đổi đi qua A cắt đường tròn O tại M và cắt đường tròn I tại N (A nằm giữa hai điểm M và N). a) Đoạn thẳng OI lần lượt cắt các đường tròn O, (I) lần lượt tại D E. Chứng minh OI là đường trung trực của đoạn thẳng AH và AB AC BC DE 2. b) Chứng minh giao điểm S của hai đường thẳng OM và IN di chuyển trên một đường tròn cố định khi đường thẳng (d) quay quanh A. c) Giả sử đường thẳng MH cắt đường trong I tại điểm thứ hai là T T H. Chứng minh rằng ba điểm N I T thẳng hàng và ba đường thẳng MS AT NH đồng quy. + Hai số tư nhiên khác nhau được gọi là “thân thiết” nếu tổng bình phương của chúng chia hết cho 3. Hỏi tập họp X {1;2;3;…;2021} có bao nhiêu cặp số “thân thiết” (không phân biệt thứ tự)? + Trong kỳ thi chọn đội tuyển năng khiếu của trường T có n môn 5 n n, mọi môn thi đều có thí sinh tham gia và thỏa mãn đồng thời các điều kiện sau: Có ít nhất 5 môn có số lượng thí sinh tham gia thi đôi một khác nhau; Với 2 môn thi bất kì, luôn tìm được 2 môn thi khác có tổng số lượng thi sinh tham gia bằng với tổng số lưọng thí sinh của 2 môn đó. Hỏi kỳ thi có ít nhất bao nhiêu môn được tổ chức?