Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG lớp 10 môn Toán năm 2019 2020 trường THPT Trần Phú Hà Tĩnh

Nội dung Đề thi chọn HSG lớp 10 môn Toán năm 2019 2020 trường THPT Trần Phú Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi chọn HSG lớp 10 môn Toán năm 2019-2020 Trường THPT Trần Phú Hà Tĩnh Đề thi chọn HSG lớp 10 môn Toán năm 2019-2020 Trường THPT Trần Phú Hà Tĩnh Trong năm học 2019-2020, Trường THPT Trần Phú - Hà Tĩnh đã tổ chức kỳ thi chọn học sinh giỏi Toán lớp 10 để tuyển chọn những em học sinh có thành tích xuất sắc vào đội tuyển học sinh giỏi Toán của nhà trường. Đề thi chọn HSG Toán lớp 10 năm 2019-2020 được biên soạn trong hình thức tự luận, bao gồm 5 bài toán trên 1 trang với thời gian làm bài là 120 phút. Lời giải chi tiết được biên soạn bởi nhóm Toán VD - VDC của trường. Một số câu hỏi trong đề thi gồm: - Cho hàm số y = (m - 2)x^2 - 2(m - 1)x + m + 2 (trong đó m là tham số). Yêu cầu: Xác định giá trị của m để đồ thị hàm số là một đường parabol có tung độ đỉnh bằng 3m, và tìm giá trị của m để hàm số là nghịch biến trên khoảng (-∞;2). - Trong hệ tọa độ Oxy, cho hình thang ABCD có các tọa độ điểm A(-2;-2), B(0;4) và C(7;3).Yêu cầu: Tìm tọa độ điểm E để thỏa mãn điều kiện EA + EB + 2EC = 0, tìm giá trị nhỏ nhất của |PA + PB + 2PC| với P là điểm di động trên trục hoành, và tìm tọa độ đỉnh D của hình thang ABCD nếu diện tích hình thang gấp 3 lần diện tích tam giác MBC. - Cho tam giác ABC đều cạnh 3a, điểm M trên BC, điểm N trên CA sao cho BM = a, CN = 2a. Yêu cầu: Tìm tích vô hướng AM.BC theo a, tính độ dài của PN nếu AM vuông góc với PN. Đề thi chọn HSG Toán lớp 10 năm 2019-2020 Trường THPT Trần Phú Hà Tĩnh mang đến cho các em học sinh cơ hội thể hiện kiến thức và khả năng giải quyết bài toán hiệu quả, từ đó chinh phục được những vấn đề khó trong môn Toán. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG Toán 10 năm học 2017 - 2018 trường THPT Quỳ Hợp 1 - Nghệ An
Đề thi chọn HSG Toán 10 năm học 2017 – 2018 trường THPT Quỳ Hợp 1 – Nghệ An gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 150 phút, thí sinh không được sử dụng máy tính cầm tay khi làm bài, kỳ thi diễn ra vào ngày 30/01/2018, đề thi có lời giải chi tiết . Trích dẫn đề thi chọn HSG Toán 10 : + Cho parabol (P): y = ax^2 + bx – 1. a. Tìm các giá trị của a; b để parabol có đỉnh S(-3/2; -11/2). b. Với giá trị của a; b tìm được ở câu 1, tìm giá trị của k để đường thẳng Δ: y = x(k + 6) + 1 cắt parabol tại hai điểm phân biệt M; N sao cho trung điểm của đoạn thẳng MN nằm trên đường thẳng d: 4x + 2y – 3 = 0. [ads] + Cho hình vuông ABCD cạnh có độ dài là a. Gọi E; F là các điểm xác định bởi BE = 1/3.BC, CF = -1/2.CD, đường thẳng BF cắt đường thẳng AE tại điểm I. + Cho tam giác đều ABC và các điểm M, N, P thỏa mãn BM = k.BC, CN = 2/3.CA, AP = 4/15.AB. Tìm k để AM vuông góc với PN.
Đề thi chọn học sinh giỏi tỉnh môn Toán 10 năm học 2016 - 2017 sở GD và ĐT Hà Tĩnh
Đề thi chọn học sinh giỏi tỉnh môn Toán 10 năm học 2016 – 2017 sở GD và ĐT Hà Tĩnh gồm 5 bài toán tự luận, có hướng dẫn giải và thang điểm. Trích một số bài toán trong đề: + Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD. Gọi M là trung điểm của đoạn thẳng BC và N là điểm thuộc đoạn thẳng AC sao cho AC = 4AN. Đường thẳng DM có phương trình y – 1 = 0 và N(1/2;-3/2). Xác định tọa độ điểm A. + Tập hợp X có 2^n phần tử được chia thành các tập con đôi một không giao nhau. Xét quy tắc chuyển phần tử giữa các tập như sau: nếu A, B là các tập con của X và số phần tử của A không nhỏ hơn số phần tử của B thì ta được phép chuyển từ tập A vào tập B số phần tử bằng số phần tử của tập B. Chứng minh rằng sau một số hữu hạn các bước chuyển theo quy tắc trên, ta nhận được tập X.
Đề thi chọn học sinh giỏi tỉnh môn Toán 10 năm học 2016 - 2017 sở GD và ĐT Hải Dương
Đề thi chọn học sinh giỏi tỉnh môn Toán 10 năm học 2016 – 2017 sở GD và ĐT Hải Dương gồm 5 bài toán tự luận, có hướng dẫn giải và thang điểm. Trích một số bài toán trong đề: + Một nông trại dự định trồng cà rốt và khoai tây trên khu đất có diện tích 5 ha. Để chăm bón ác loại cây này, nông trại phải dùng phân vi sinh. Nếu trồng cà rốt trên 1 ha cần dùng 3 tấn phân vi sinh và thu được 50 triệu đồng tiền lãi. Nếu trồng khoai tây trên 1 ha cần dùng 5 tấn phân vi sinh và thu được 75 triệu đồng tiền lãi. Hỏi nông trại cần trồng mỗi loại cây trên diện tích là bao nhiêu để thu được tổng số tiền lãi cao nhất? Biết rằng số phân vi sinh cần dùng không được vượt quá 18 tấn. + Cho hình bình hành ABCD. Gọi M là trung điểm cạnh CD; N là điểm thuộc cạnh AD sao cho AN = 1/3AD. Gọi G là trọng tâm tam giác BMN, đường thẳng AG cắt BC tại K. Tính tỉ số BK/BC.