Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán THPT cấp thành phố năm 2020 - 2021 sở GDĐT Cần Thơ

Thứ Sáu ngày 12 tháng 03 năm 2021, sở Giáo dục và Đào tạo thành phố Cần Thơ tổ chức kỳ thi chọn học sinh giỏi THPT cấp thành phố môn Toán năm học 2020 – 2021. Đề học sinh giỏi Toán THPT cấp thành phố năm 2020 – 2021 sở GD&ĐT Cần Thơ được biên soạn theo hình thức đề thi tự luận 100%, đề gồm 01 trang với 07 bài toán, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề học sinh giỏi Toán THPT cấp thành phố năm 2020 – 2021 sở GD&ĐT Cần Thơ : + Tại một buổi liên hoan tri ân khách hàng của một công ty, Ban tổ chức phát hành 900 tấm vé trúng thưởng, mỗi tấm vé được ghi một số nguyên, liên tiếp từ 100 đến 999. Khách đến tham dự, chọn ngẫu nhiên các tấm vé này. Nếu chọn được tấm vé có ghi số lẻ và chia hết cho 9 thì được nhận số tiền thưởng tương ứng với số ghi trên tấm vé nhân với 1500 đồng. Nếu chọn được tấm vé có ghi các số còn lại thì được nhận số tiền thưởng tương ứng với số ghi trên tấm vé nhân với 1000 đồng. Hỏi tổng số tiền Ban tổ chức dùng để trao thưởng cho khách hàng là bao nhiêu? + Cô An dự định xây một cái bể có thể tích bằng 18 m3 dùng để dự trữ nước mưa. Biết bể này không có nắp và có dạng một khối lăng trụ lục giác đều. Hỏi cô An phải thiết kế cạnh đáy của bể trên dài bao nhiêu mét để tổng diện tích phần phải xây là nhỏ nhất? + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC (không có góc tù) nội tiếp đường tròn tâm I. Gọi D là chân đường phân giác trong góc A. Đường thẳng đi qua D và vuông góc với đường thẳng AI cắt đường thẳng AC tại điểm E. Tìm tọa độ các điểm A và C, biết B(5;0), I(-1/2;1), E(-1;0) và A có tung độ âm.

Nguồn: toanmath.com

Đọc Sách

Đề chọn học sinh giỏi tỉnh Toán 12 năm 2019 - 2020 sở GDĐT Bình Định
Ngày 22 tháng 10 năm 2019, sở Giáo dục và Đào tạo tỉnh Bình Định tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2019 – 2020. Đề chọn học sinh giỏi tỉnh Toán 12 năm học 2019 – 2020 sở GD&ĐT Bình Định gồm có 05 bài toán tự luận, đề thi gồm có 01 trang, thời gian làm bài 180 phút. Trích dẫn đề chọn học sinh giỏi tỉnh Toán 12 năm 2019 – 2020 sở GD&ĐT Bình Định : + Cho tam giác ABC (AC < BC) nội tiếp trong đường tròn tâm O. Phân giác góc C cắt đường tròn (O) tại R. Gọi K, L lần lượt là trung điểm của AC và BC. Đường vuông góc với AC tại K cắt CR tại P, đường vuông góc với BC tại L cắt CR tại Q. Chứng minh rằng diện tích của các hình tam giác RPK và RQL bằng nhau. + Cho hình chóp S.ABC có SA, SB, SC đôi một vuông góc. Gọi R và r lần lượt là bán kính mặt cầu ngoại tiếp và bán kính mặt cầu nội tiếp hình chóp; V là thể tích khối chóp và h là đường cao của hình chóp từ đỉnh S. Tìm giá trị lớn nhất của biểu thức V(h – r)/R^2rh. [ads] + Trên bảng kẻ ô vuông 2 × n ghi các số dương sao cho tổng của hai số trong mỗi cột bằng 1. Chứng minh rằng có thể bỏ đi một số trong mỗi cột để trên mỗi hàng các số còn lại có tổng không vượt quá (n + 1)/4. + Tìm tất cả các số nguyên tố p có dạng a^2 + b^2 + c^2 với a, b, c là các số tự nhiên sao cho a^4 + b^4 + c^4 chia hết cho p. + Cho hai đa thức P(x) và Q(x) = aP(x) + bP'(x) với a, b là các số thực và a ≠ 0. Chứng minh rằng nếu đa thức Q(x) vô nghiệm thì đa thức P(x) cũng vô nghiệm.
Đề chọn học sinh giỏi MTCT 12 năm 2019 - 2020 sở GDĐT Thừa Thiên Huế
Ngày 04 tháng 10 năm 2019, sở Giáo dục và Đào tạo Thừa Thiên Huế tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh giải toán trên máy tính cầm tay năm học 2019 – 2020 dành cho học sinh khối 12. Đề chọn học sinh giỏi MTCT 12 năm 2019 – 2020 sở GD&ĐT Thừa Thiên Huế gồm 09 câu, thời gian làm bài 90 phút, thí sinh dự thi trình bày vắn tắt cách giải, công thức áp dụng. Trích dẫn đề chọn học sinh giỏi MTCT 12 năm 2019 – 2020 sở GD&ĐT Thừa Thiên Huế : + Tìm nghiệm gần đúng của phương trình: √(3x^2 + 12x + 18) + √(x^2 + x – 10) = 3√(x + 5). + Tính giá trị tổng tất cả các nghiệm của phương trình: 2sinx + cosx – sin2x = 1 trên đoạn [-4pi;4pi]. + Tìm ba chữ số tận cùng của tổng: M = 3^2018 + 3^2019 + 3^2020.
Đề chọn HSG thành phố Toán 12 năm 2019 - 2020 sở GDĐT Hải Phòng
Ngày 19 tháng 09 năm 2019, sở Giáo dục và Đào tạo Hải Phòng tổ chức kỳ thi chọn học sinh giỏi thành phố môn Toán 12 năm học 2019 – 2020. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chọn HSG thành phố Toán 12 năm 2019 – 2020 sở GD&ĐT Hải Phòng, đề thi dành cho bảng không chuyên, đề gồm 01 trang với 07 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề chọn HSG thành phố Toán 12 năm 2019 – 2020 sở GD&ĐT Hải Phòng : + Cho hình lăng trụ đứng ABC.A’B’C’ có AB = a, AC = 2a, AA’ = 2a√5 và góc BAC bằng 120 độ. Gọi M là trung điểm của cạnh CC’. a) Chứng minh rằng MB vuông góc với A M’. b) Tính khoảng cách từ điểm A đến mặt phẳng (A’BM) theo a. [ads] + Từ tập hợp tất cả các số tự nhiên có 5 chữ số mà các chữ số đều khác 0, lấy ngẫu nhiên một số. Tính xác suất để trong số tự nhiên được lấy ra có mặt đúng ba chữ số khác nhau. + Trong mặt phẳng với hệ tọa độ Oxy cho tứ giác ABCD nội tiếp đường tròn đường kính BD. Gọi H, K lần lượt là hình chiếu vuông góc của A trên các đường thẳng BD và CD. Biết A(4;6), đường thẳng HK có phương trình 3x – 4y – 4 = 0, điểm C thuộc đường thẳng d1: x + y – 2 = 0 và điểm B thuộc đường thẳng d2: x – 2y – 2 = 0, điểm K có hoành độ nhỏ hơn 1. Tìm tọa độ các điểm B và C.
Đề chọn đội tuyển HSG Toán năm 2020 sở GDĐT Khánh Hòa (vòng 1).
Thứ Năm ngày 19 tháng 09 năm 2019, sở Giáo dục và Đào tạo Khánh Hòa tổ chức kỳ thi chọn đội tuyển thi học sinh giỏi môn Toán khối THPT cấp Quốc gia năm 2020. Đề chọn đội tuyển HSG Toán năm 2020 sở GD&ĐT Khánh Hòa (vòng 1) gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 180 phút. Trích dẫn đề chọn đội tuyển HSG Toán năm 2020 sở GD&ĐT Khánh Hòa (vòng 1) : + Chứng minh rằng với mỗi số nguyên dương n, tồn tại duy nhất một cặp số nguyên dương (a;b) sao cho n = 1/2.(a + b – 1)(a + b – 2) + a. [ads] + Một nhóm phượt có n thành viên. Năm 2018, họ thực hiện sáu chuyến du lịch mà mỗi chuyến có đúng 5 thành viên tham gia. Biết rằng hai chuyến du lịch bất kì chung nhau không quá 2 thành viên. Tìm giá trị nhỏ nhất của n. + Cho tam giác ABC nhọn không cần có đường trung tuyến AM và đường phân giác trong AD. Qua điểm N thuộc đoạn thẳng AD (N không trùng với A và D), kẻ NP vuông góc với AB (P thuộc cạnh AB). Đường thẳng qua P vuông góc với AD cắt đoạn thẳng AM tại Q. Chứng minh rằng QN vuông góc với BC.