Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 - 2024 sở GDĐT Hưng Yên

giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển dự thi học sinh giỏi cấp Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hưng Yên; kỳ thi được diễn ra trong hai ngày: ngày thi thứ nhất 28/08/2023 và ngày thi thứ hai: 29/08/2023. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Hưng Yên : + Tam giác nhọn không cân ABC có trực tâm H và đường tròn ngoại tiếp (O), đường phân giác trong của góc BAC cắt BC tại K. Điểm Q nằm trên đường tròn (O) sao cho AQ vuông góc QK. Đường tròn ngoại tiếp tam giác AQH cắt AC, AB lần lượt tại Y, Z. Gọi T là giao điểm của BY và CZ, P là giao điểm của YZ và BC. a) Chứng minh rằng PZ/PY = BH/HC. b) Chứng minh rằng TH vuông góc KA. + Cho tam giác ABC nội tiếp đường tròn (O). Đường tròn nội tiếp (I) của tam giác ABC lần lượt tiếp xúc với BC, CA, AB tại D, E, F. Biết AI cắt BC tại S và cắt (O) tại điểm thứ hai là M. Các đường tròn ngoại tiếp tam giác BSM, CSM cắt ME, MF tương ứng tại K và L (K và L khác M). a) Chứng minh rằng bốn điểm I, L, S, K cùng nằm trên một đường tròn. b) Gọi T là giao điểm thứ hai của MD với (O). Chứng minh rằng đường tròn ngoại tiếp tam giác TKL tiếp xúc với (O). + Cô giáo có tất cả 2278 viên kẹo thuộc về k loại kẹo khác nhau. Cô chia cho các học sinh của mình mỗi người một số viên kẹo và không có học sinh nào nhận nhiều hơn một viên kẹo ở cùng một loại kẹo. Cô yêu cầu hai học sinh khác nhau bất kỳ so sánh các viên kẹo mình nhận được và viết số loại kẹo mà cả hai cùng có lên bảng. Biết rằng mỗi cặp học sinh bất kỳ đều được lên bảng đúng một lần. Gọi tổng các số được viết lên bảng là M. Xác định giá trị nhỏ nhất của M trong mỗi trường hợp sau: a) k = 67. b) k = 68.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2016 2017 sở GD ĐT Lai Châu
Nội dung Đề thi học sinh giỏi lớp 12 môn Toán cấp tỉnh năm 2016 2017 sở GD ĐT Lai Châu Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi môn Toán lớp 12 cấp tỉnh năm học 2016 – 2017 sở Giáo dục và Đào tạo UBND tỉnh Lai Châu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán lớp 12 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu : + Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, mặt bên SAC là tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy (ABC), đường SB tạo với mặt phẳng (ABC) một góc 0 60, M là trung điểm cạnh BC. Tính theo a thể tích khối S.ABC và khoảng cách giữa hai đường thẳng SM và AC. + Có 2017 học sinh đứng thành vòng tròn và quay mặt vào giữa để chơi trò đếm số như dưới đây: Mỗi học sinh đếm một số lần lượt theo chiều kim đồng hồ, bắt đầu từ học sinh A nào đó. Các số được đếm là 1, 2, 3 và cứ lặp lại theo thứ tự như thế. Nếu học sinh nào đếm số 2 hoặc số 3 thì phải dời khỏi ngay vị trí ở vòng tròn. Học sinh còn lại cuối cùng sẽ được thưởng. Hỏi học sinh muốn nhận phần thưởng thì lúc bắt đầu chơi phải chọn vị trí thứ bao nhiêu theo chiều kim đồng hồ kể từ học sinh A đếm số 1 đầu tiên. + Cho hàm số 3 2 y x x mx 3 4 (m là tham số). Tìm m để hàm số đồng biến trên khoảng (−∞;0).
Đề thi chọn học sinh giỏi lớp 12 môn Toán năm học 2016 2017 sở GD và ĐT Vĩnh Phúc
Nội dung Đề thi chọn học sinh giỏi lớp 12 môn Toán năm học 2016 2017 sở GD và ĐT Vĩnh Phúc Bản PDF Đề thi chọn học sinh giỏi (HSG) Toán lớp 12 năm học 2016 – 2017 sở GD và ĐT Vĩnh Phúc gồm 6 câu tự luận. Trích một số câu trong đề thi: 1. Một ngọn hải đăng đặt tại vị trí A cách bờ biển một khoảng AB = 4 km. Trên bờ biển có một cái kho ở vị trí C cách B một khoảng BC = 7 km. Người canh hải đăng phải chèo đò từ vị trí A đến vị trí M trên bờ biển với vận tốc 6 km/h rồi đi xe đạp từ M đến C với vận tốc 10 km/h (hình vẽ bên). Xác định vị trí của M để người đó đến C nhanh nhất. 2. Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB = 8, BC = 6. Biết SA = 6 và SA vuông góc với mặt phẳng (ABC). Tìm bán kính mặt cầu có tâm thuộc phần không gian bên trong của hình chóp và tiếp xúc với tất cả các mặt của hình chóp S.ABC.
Đề thi chọn học sinh giỏi lớp 12 môn Toán năm 2016 sở GD và ĐT Quảng Ninh
Nội dung Đề thi chọn học sinh giỏi lớp 12 môn Toán năm 2016 sở GD và ĐT Quảng Ninh Bản PDF Đề thi chọn học sinh giỏi Toán lớp 12 năm 2016 sở GD và ĐT Quảng Ninh gồm 6 câu tự luận, có đáp án và thang điểm. Trích một số câu trong đề thi: 1. Một học sinh tham dự kỳ thi môn Toán. Học sinh đó phải làm một đề thi trắc nghiệm khách quan gồm 10 câu. Mỗi câu có 4 đáp án khác nhau, trong đó chỉ có một đáp án đúng. Học sinh sẽ được chấm đỗ nếu trả lời đúng ít nhất 6 câu. Vì học sinh đó không học bài nên chỉ chọn ngẫu nhiên đáp án trong cả 10 câu hỏi. Tính xác suất để học sinh thi đỗ. 2. Trong mặt phẳng với hệ trục tọa độ Oxy, cho tam giác ABC có ba góc đều nhọn. Đường thẳng chứa trung tuyến kẻ từ B và đường thẳng AC lần lượt có phương trình : 3x + 5y – 8 = 0; x – y – 4 = 0. Đường thẳng qua B và vuông góc với AC cắt đường tròn ngoại tiếp tam giác ABC tại điểm thứ hai là D(4; –2). Tính diện tích tam giác ABC. 3. Cho hình chóp đều S.ABCD, có đáy là hình vuông ABCD với độ dài cạnh bằng a và tâm là O. Gọi M, N lần lượt là trung điểm của SA và BC. Biết góc giữa MN và mặt phẳng (ABCD) bằng 60. Tính cosin của góc giữa MN và mặt phẳng (SBD).
Đề thi chọn học sinh giỏi lớp 12 môn Toán năm học 2016 2017 sở GD và ĐT Ninh Bình
Nội dung Đề thi chọn học sinh giỏi lớp 12 môn Toán năm học 2016 2017 sở GD và ĐT Ninh Bình Bản PDF Đề thi chọn học sinh giỏi Toán lớp 12 năm học 2016 – 2017 sở GD và ĐT Ninh Bình gồm 2 phần: + Phần trắc nghiệm: 40 câu + Phần tự luận: 4 câu