Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Hà Giang

Nội dung Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 2023 sở GD ĐT Hà Giang Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán THCS cấp tỉnh Hà Giang năm 2022-2023 Đề thi học sinh giỏi Toán THCS cấp tỉnh Hà Giang năm 2022-2023 Xin chào quý thầy cô giáo và các em học sinh lớp 9! Hôm nay, chúng ta sẽ cùng nhau tìm hiểu về đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2022 – 2023 của sở Giáo dục và Đào tạo tỉnh Hà Giang. Đề thi bao gồm các bài toán thú vị và thách thức để kiểm tra kiến thức và kỹ năng của các em. Dưới đây là một số câu hỏi trong đề thi: 1. Cho Parabol (P): y = x2 và đường thẳng d: y = 2x - m. Hãy tìm giá trị của m sao cho đường thẳng d cắt parabol (P) tại hai điểm phân biệt với hoành độ x1, x2 thỏa mãn x12 + x22 = 5. 2. Cho x, y, z là ba số thực dương thỏa mãn: x + y + z = 23 và xy + yz + zx = 4. Hãy chứng minh rằng? 3. Trong tam giác ABC vuông tại A, với AB < AC và M là trung điểm của cạnh BC. Gọi P là một điểm bất kì trên đoạn AM. K, L lần lượt là các điểm nằm trên tia BP, CP sao cho AKB = ABC và ALC = ACB. Đường tròn (I) ngoại tiếp tam giác BPL cắt đường thẳng AB tại điểm F. Đường tròn (J) ngoại tiếp tam giác CPK cắt đường thẳng AC tại điểm E. Hãy chứng minh rằng: a) Tam giác BKA và BAP đồng dạng. b) Đường tròn IJ song song với đường FE. Hy vọng đề thi này sẽ giúp các em học sinh ôn tập và nâng cao kiến thức Toán của mình. Chúc quý thầy cô giáo và các em học sinh một kỳ thi thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2012 - 2013 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2012 – 2013 sở GD&ĐT Đồng Tháp gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 10/03/2013.
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2011 - 2012 sở GDĐT Đồng Tháp
Đề thi chọn học sinh giỏi Toán 9 cấp tỉnh năm 2011 – 2012 sở GD&ĐT Đồng Tháp gồm 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được tổ chức ngày 11/03/2012, đề thi có lời giải chi tiết và hướng dẫn chấm điểm.
Đề thi HSG huyện lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Đô Lương Nghệ An
Nội dung Đề thi HSG huyện lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Đô Lương Nghệ An Bản PDF - Nội dung bài viết Đề thi HSG huyện lớp 9 môn Toán năm 2023-2024 phòng GD&ĐT Đô Lương Nghệ An Đề thi HSG huyện lớp 9 môn Toán năm 2023-2024 phòng GD&ĐT Đô Lương Nghệ An Xin chào quý thầy cô và các em học sinh lớp 9! Dưới đây là đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 9 năm học 2023-2024 của phòng Giáo dục và Đào tạo huyện Đô Lương, tỉnh Nghệ An. Đề thi bao gồm các câu hỏi sau: Câu 1: Cho T = 4n + 1 với n là số tự nhiên lẻ lớn hơn 1. Chứng minh giá trị của T là hợp số. Câu 2: Cho tam giác ABC vuông tại A, đường cao AH. Gọi N là trung điểm của BC. Từ N vẽ đường thẳng song song với AB cắt AC tại E. Từ C vẽ đường thẳng song song với AH cắt đường thẳng NE tại K. BK cắt AH tại M. a) Chứng minh BC2 = 4.NE.NK và M là trung điểm của đoạn thẳng AH b) Các đường phân giác của tam giác AHE cắt nhau tại I, các đường phân giác của tam giác CHE cắt nhau tại Q. Đường thẳng IQ cắt các đường thẳng AH và CH thứ tự tại P và F. Chứng minh AH.HC = 2.HP.HF. Hy vọng đề thi sẽ giúp các em rèn luyện và nâng cao kiến thức, kỹ năng trong môn Toán. Chúc các em thành công!
Đề thi Olympic lớp 9 môn Toán năm 2023 2024 trường chuyên Lam Sơn Thanh Hóa
Nội dung Đề thi Olympic lớp 9 môn Toán năm 2023 2024 trường chuyên Lam Sơn Thanh Hóa Bản PDF - Nội dung bài viết Đề thi Olympic Toán lớp 9 năm 2023-2024 trường chuyên Lam Sơn Thanh Hóa Đề thi Olympic Toán lớp 9 năm 2023-2024 trường chuyên Lam Sơn Thanh Hóa Chào đón quý thầy cô và các em học sinh lớp 9, đây là bộ đề thi Olympic dành cho các trường THCS nhằm chuẩn bị cho kỳ thi học sinh giỏi môn Toán lớp 9 năm học 2023-2024 tại trường THPT chuyên Lam Sơn, Thanh Hóa. Kỳ thi sẽ diễn ra vào ngày 05 tháng 11 năm 2023, với đề thi có đáp án và hướng dẫn chấm điểm. Trong đề thi này, chúng ta sẽ gặp các bài toán đa dạng và thú vị như: Phương trình nghiệm nguyên ax by c với điều kiện số nguyên dương A. Cách chứng minh số nghiệm nguyên thỏa mãn điều kiện đã cho. Chứng minh đồng dạng của các tam giác trong hình học cơ bản thông qua giao điểm ba đường phân giác của tam giác. Chứng minh tính chất về đường tròn nội tiếp tam giác và đường thẳng đi qua tâm của đường tròn. Hy vọng rằng bộ đề thi này sẽ giúp các em ôn tập hiệu quả và chuẩn bị tốt cho kỳ thi sắp tới. Chúc quý thầy cô và các em học sinh đạt được kết quả cao trong kỳ thi sắp tới. Chúc các em học tốt và thành công!