Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi tỉnh lớp 10 môn Toán năm 2015 2016 sở GD ĐT Hà Tĩnh

Nội dung Đề thi chọn học sinh giỏi tỉnh lớp 10 môn Toán năm 2015 2016 sở GD ĐT Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi chọn học sinh giỏi tỉnh Toán lớp 10 năm 2015-2016 Đề thi chọn học sinh giỏi tỉnh Toán lớp 10 năm 2015-2016 Sytu xin giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi tỉnh Toán lớp 10 năm 2015-2016 của sở GD&ĐT Hà Tĩnh. Đề thi này bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích đề thi: + Trong mặt phẳng với hệ trục tọa độ Oxy, cho tam giác nhọn ABC có đường cao AH (H ∈ BC) và D, E lần lượt là trung điểm của AB, AC. Gọi F là điểm đối xứng với B qua E. Giả sử F(−3; 3) và đường trung trực của CH có phương trình x − 1 = 0. Tìm tọa độ giao điểm M của các đường thẳng HD, FA. Tìm tọa độ giao điểm N của tia CD với đường tròn ngoại tiếp tam giác ABC (N 6= C), biết đường thẳng đi qua N và tâm đường tròn ngoại tiếp tam giác HCF có phương trình x − 2y − 1 = 0. + Một vùng đất hình chữ nhật ABCD có AB = 25 km, BC = 20 km và M, N lần lượt là trung điểm của AD, BC. Một người cưỡi ngựa xuất phát từ A đi đến C bằng cách đi thẳng từ A đến một điểm X thuộc đoạn MN rồi lại đi thẳng từ X đến C. Vận tốc của ngựa khi đi trên phần ABNM là 15 km/h, vận tốc của ngựa khi đi trên phần MNCD là 30 km/h. Tìm vị trí của X để thời gian ngựa di chuyển từ A đến C là ít nhất. + Tìm giá trị lớn nhất của số nguyên dương n sao cho tồn tại n tam thức bậc hai khác nhau từng đôi một thỏa mãn đồng thời các điều kiện sau: i) mỗi tam thức bậc hai có hệ số của x^2 bằng 1; ii) tổng của 2 tam thức bậc hai bất kỳ có đúng 1 nghiệm (hai tam thức bậc hai là khác nhau nếu có ít nhất một hệ số tương ứng khác nhau).

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG Toán 10 năm học 2017 - 2018 trường THPT Quỳ Hợp 1 - Nghệ An
Đề thi chọn HSG Toán 10 năm học 2017 – 2018 trường THPT Quỳ Hợp 1 – Nghệ An gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 150 phút, thí sinh không được sử dụng máy tính cầm tay khi làm bài, kỳ thi diễn ra vào ngày 30/01/2018, đề thi có lời giải chi tiết . Trích dẫn đề thi chọn HSG Toán 10 : + Cho parabol (P): y = ax^2 + bx – 1. a. Tìm các giá trị của a; b để parabol có đỉnh S(-3/2; -11/2). b. Với giá trị của a; b tìm được ở câu 1, tìm giá trị của k để đường thẳng Δ: y = x(k + 6) + 1 cắt parabol tại hai điểm phân biệt M; N sao cho trung điểm của đoạn thẳng MN nằm trên đường thẳng d: 4x + 2y – 3 = 0. [ads] + Cho hình vuông ABCD cạnh có độ dài là a. Gọi E; F là các điểm xác định bởi BE = 1/3.BC, CF = -1/2.CD, đường thẳng BF cắt đường thẳng AE tại điểm I. + Cho tam giác đều ABC và các điểm M, N, P thỏa mãn BM = k.BC, CN = 2/3.CA, AP = 4/15.AB. Tìm k để AM vuông góc với PN.
Đề thi chọn học sinh giỏi tỉnh môn Toán 10 năm học 2016 - 2017 sở GD và ĐT Hà Tĩnh
Đề thi chọn học sinh giỏi tỉnh môn Toán 10 năm học 2016 – 2017 sở GD và ĐT Hà Tĩnh gồm 5 bài toán tự luận, có hướng dẫn giải và thang điểm. Trích một số bài toán trong đề: + Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD. Gọi M là trung điểm của đoạn thẳng BC và N là điểm thuộc đoạn thẳng AC sao cho AC = 4AN. Đường thẳng DM có phương trình y – 1 = 0 và N(1/2;-3/2). Xác định tọa độ điểm A. + Tập hợp X có 2^n phần tử được chia thành các tập con đôi một không giao nhau. Xét quy tắc chuyển phần tử giữa các tập như sau: nếu A, B là các tập con của X và số phần tử của A không nhỏ hơn số phần tử của B thì ta được phép chuyển từ tập A vào tập B số phần tử bằng số phần tử của tập B. Chứng minh rằng sau một số hữu hạn các bước chuyển theo quy tắc trên, ta nhận được tập X.
Đề thi chọn học sinh giỏi tỉnh môn Toán 10 năm học 2016 - 2017 sở GD và ĐT Hải Dương
Đề thi chọn học sinh giỏi tỉnh môn Toán 10 năm học 2016 – 2017 sở GD và ĐT Hải Dương gồm 5 bài toán tự luận, có hướng dẫn giải và thang điểm. Trích một số bài toán trong đề: + Một nông trại dự định trồng cà rốt và khoai tây trên khu đất có diện tích 5 ha. Để chăm bón ác loại cây này, nông trại phải dùng phân vi sinh. Nếu trồng cà rốt trên 1 ha cần dùng 3 tấn phân vi sinh và thu được 50 triệu đồng tiền lãi. Nếu trồng khoai tây trên 1 ha cần dùng 5 tấn phân vi sinh và thu được 75 triệu đồng tiền lãi. Hỏi nông trại cần trồng mỗi loại cây trên diện tích là bao nhiêu để thu được tổng số tiền lãi cao nhất? Biết rằng số phân vi sinh cần dùng không được vượt quá 18 tấn. + Cho hình bình hành ABCD. Gọi M là trung điểm cạnh CD; N là điểm thuộc cạnh AD sao cho AN = 1/3AD. Gọi G là trọng tâm tam giác BMN, đường thẳng AG cắt BC tại K. Tính tỉ số BK/BC.