Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Hậu Lộc Thanh Hóa

Nội dung Đề học sinh giỏi lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Hậu Lộc Thanh Hóa Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 7 năm 2022-2023 phòng GD&ĐT Hậu Lộc - Thanh Hóa Đề học sinh giỏi Toán lớp 7 năm 2022-2023 phòng GD&ĐT Hậu Lộc - Thanh Hóa Chào mừng quý thầy cô và các em học sinh lớp 7! Sytu hân hạnh giới thiệu đến các bạn đề khảo sát chất lượng học sinh giỏi môn Toán lớp 7 năm học 2022-2023 của phòng Giáo dục và Đào tạo huyện Hậu Lộc, tỉnh Thanh Hóa. Kỳ thi sẽ diễn ra vào thứ Bảy, ngày 25 tháng 02 năm 2023. Dưới đây là một số câu hỏi trong đề thi: - Số A được chia thành ba phần tỉ lệ theo. Biết tổng các bình phương của ba số đó bằng 24309. Hãy tìm số A. - Cho a, b, c, d là các số nguyên thỏa mãn a2 = b2 + c2 + d2. Chứng minh rằng: abcd + 2023 có thể viết được dưới dạng hiệu của hai số chính phương. - Cho tam giác ABC có ba góc nhọn (AB < AC). Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao của CD và BE, K là giao của AB và DC. a) Chứng minh rằng: ADC = ABE và EIB = 60. b) Gọi M và N lần lượt là trung điểm của CD và BE. Chứng minh: AMN đều. c) Chứng minh rằng: IA là phân giác của góc DIE. Hy vọng rằng đề thi sẽ giúp các em học sinh lớp 7 rèn luyện và phát triển khả năng giải quyết vấn đề, suy luận logic và tự tin trong môn Toán. Chúc các em thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Tuyển tập 150 đề thi học sinh giỏi môn Toán 7 - Hồ Khắc Vũ
Tài liệu gồm 157 trang tuyển tập 150 đề thi chọn học sinh giỏi môn Toán lớp 7 từ các trường THCS, cơ sở GD và ĐT trên toàn quốc. Tài liệu do thầy Hồ Khắc Vũ tổng hợp và biên soạn.
Đề thi học sinh giỏi Toán 7 năm 2016 - 2017 phòng GDĐT Giao Thủy - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi học sinh giỏi Toán 7 năm học 2016 – 2017 phòng GD&ĐT Giao Thủy – Nam Định; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi học sinh giỏi Toán 7 năm 2016 – 2017 phòng GD&ĐT Giao Thủy – Nam Định : + Cho tam giác ABC, O là trung điểm của BC. Từ B kẻ BD vuông góc với AC (D thuộc AC). Từ C kẻ CE vuông góc với AB (E thuộc AB). a. Chứng minh rằng: OD BC. b. Trên tia đối của tia DE lấy điểm N, trên tia đối của tia ED lấy điểm M sao cho DN = EM. Chứng minh rằng: Tam giác OMN là tam giác cân. + Cho các số nguyên dương a; b; c; d; e thỏa mãn: chia hết cho 2. Chứng tỏ rằng: a + b + c + d + e là hợp số. + Cho tỷ lệ thức: a c b d. Chứng minh rằng: 2 3 2 3 2 3 2 3 a b c d a b c d (giả thiết các tỷ lệ thức đều có nghĩa).
Đề thi HSG Toán 7 năm 2016 - 2017 phòng GDĐT Hoằng Hóa - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đáp án và lời giải chi tiết đề thi HSG Toán 7 năm 2016 – 2017 phòng GD&ĐT Hoằng Hóa – Thanh Hóa; kỳ thi được diễn ra vào ngày 21 tháng 02 năm 2017.
Đề thi HSG huyện Toán 7 năm 2013 - 2014 phòng GDĐT Việt Yên - Bắc Giang
Đề thi HSG huyện Toán 7 năm 2013 – 2014 phòng GD&ĐT Việt Yên – Bắc Giang có đáp án và lời giải chi tiết, kỳ thi được diễn ra vào ngày 12 tháng 04 năm 2014.