Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Đà Nẵng

Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Đà Nẵng Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2023-2024 sở GD&ĐT Đà Nẵng Đề tuyển sinh môn Toán (chuyên) năm 2023-2024 sở GD&ĐT Đà Nẵng Xin chào quý thầy cô và các em học sinh! Dưới đây là đề chính thức của kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán (chuyên) năm học 2023-2024 dành cho thí sinh muốn vào trường THPT chuyên Lê Quý Đôn, Đà Nẵng. Đề thi bao gồm các câu hỏi sau: 1. Cho parabol (P): y = x^2 và đường thẳng (d): y = kx + 5 trên cùng một mặt phẳng tọa độ. Đường thẳng (d) cắt parabol (P) tại hai điểm A và B. Gọi C, D lần lượt là hình chiếu của A, B trên trục Ox. Hãy tính diện tích hình thang ABDC khi k = -4 và tìm tất cả các giá trị của k để AD và BC cắt nhau tại một điểm nằm trên đường tròn đường kính CD. 2. Cho tam giác nhọn ABC với AB < AC, nội tiếp đường tròn (O). Các tiếp tuyến của đường tròn (O) tại B và C cắt nhau ở D. Đường tròn đường kính AD cắt đường tròn đường kính OD tại điểm E (khác D). Gọi F là giao điểm của đoạn thẳng OE và đường tròn (O). Chứng minh rằng ba điểm A, O, E thẳng hàng và CF là tia phân giác của góc BCE. Tiếp theo, chứng minh rằng OD đi qua trung điểm của đoạn thẳng GK. 3. Cho tam giác nhọn ABC có AB < AC < BC, đường tròn (O) nội tiếp tam giác ABC tiếp xúc với cạnh AB tại M. Lấy điểm E nằm giữa A và M. Trên cạnh AC, BC lần lượt lấy các điểm D, F sao cho AD = AE và BF = BE. Đường tròn ngoại tiếp tam giác DEF lần lượt cắt AB và BC tại G (khác E) và H (khác F). Chứng minh rằng O là tâm đường tròn ngoại tiếp tam giác DEF và các đường thẳng CM, ED, GH đồng quy. Hy vọng rằng đề thi sẽ giúp các em học sinh thử thách và phát huy tối đa khả năng của mình. Chúc các em ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 trường ĐHSP Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 trường ĐHSP Hà Nội; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 trường ĐHSP Hà Nội : + Một tấm biển quảng cáo có dạng hình tròn tâm O, bán kính bằng 1,6m. Giả sử hình chữ nhật ABCD nội tiếp đường tròn tâm O bán kính bằng 1,6m sao cho BOC 45 (hình bên). Người ta cần sơn màu toàn bộ tấm biển quảng cáo và chỉ sơn một mặt như ở hình bên. Biết mức chi phí sơn phần hình tô đậm là 150 nghìn đồng/ 2m và phần còn lại là 200 nghìn đồng/ 2m. Hỏi số tiền (làm tròn đến đơn vị nghìn đồng) để sơn toàn bộ biển quảng cáo bằng bao nhiêu? Cho pi = 3,14. + Cho ba điểm A, B, C cố định sao cho A, B, C thẳng hàng, B nằm giữa A và C. Gọi d là đường thẳng đi qua C và vuông góc với AB. Lấy điểm M tùy ý trên d. Đường thẳng đi qua B và vuông góc với AM cắt các đường thẳng AM, d lần lượt tại I, N. Đường thẳng MB cắt AN tại K. a) Chứng minh rằng tứ giác MIKN nội tiếp. b) Chứng minh rằng CM CN AC BC. c) Gọi O là tâm của đường tròn ngoại tiếp tam giác AMN. Vẽ hình bình hành MBNE. Gọi H là trung điểm của đoạn thẳng BE. Chứng minh rằng OH vuông góc với đường thẳng d và 1 2 OH AB. + Cho a và b là hai số hữu tỉ. Chứng minh rằng nếu a b 2 3 cũng là số hữu tỉ thì a b 0.
Đề tuyển sinh vào lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Bắc Kạn
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh vào lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Bắc Kạn; kỳ thi được diễn ra vào ngày 17 tháng 06 năm 2021.
Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Đà Nẵng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 môn Toán năm học 2021 – 2022 sở GD&ĐT thành phố Đà Nẵng. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Đà Nẵng : + Tìm hai số tự nhiên, biết rằng tổng của chúng bằng 2021 và hiệu của số lớn và số bé bằng 15. + Một địa phương lên kế hoạch xét nghiệm SARS-CoV-2 cho 12000 người trong một thời gian quy định. Nhờ cải tiến phương pháp nên mỗi giờ xét nghiệm được thêm 1 000 người. Vì thế, địa phương này hoàn thành sớm hơn kế hoạch là 16 giờ. Hỏi theo kế hoạch, địa phương này phải xét nghiệm trong thời gian bao nhiêu giờ? + Cho tam giác nhọn ABC có AB < AC, các đường cao BD, CE (D thuộc AC, E thuộc AB) cắt nhau tại H. a) Chứng minh rằng tứ giác BEDC nội tiếp. b) Gọi M là trung điểm của BC. Đường tròn đường kính AH cắt AM tại điểm G (G khác A). Chứng minh rằng AE.AB = AC.AM. c) Hai đường thẳng DE và BC cắt nhau tại K. Chứng minh rằng MAC = GCM và đường thẳng nối tâm hai đường tròn ngoại tiếp hai tam giác MBB, MCD song song với đường thẳng KG.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2021 - 2022 sở GDĐT Hải Dương
Thứ Ba ngày 15 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Hải Dương tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2021 – 2022. Đề tuyển sinh lớp 10 THPT môn Toán năm 2021 – 2022 sở GD&ĐT Hải Dương gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi 120 phút (không kể thời gian phát đề), đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2021 – 2022 sở GD&ĐT Hải Dương : + Một mảnh đất hình chữ nhật có chu vi 24m. Nếu tăng chiều dài lên 2m và giảm chiều rộng đi 1m thì diện tích mảnh đất tăng thêm 1m2. Tìm độ dài các cạnh của mảnh đất hình chữ nhật ban đầu. + Cho phương trình 2 x m x m 2 1 3 0 (với m là tham số). Chứng minh rằng phương trình đã cho luôn có hai nghiệm phân biệt 1 x và 2 x với mọi m. Tìm các giá trị của tham số m sao cho: 1 2 x x 4. + Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn O R và hai đường cao AE, BF cắt nhau tại H (E BC F AC). a) Chứng minh rằng bốn điểm A, B, E, F cùng nằm trên một đường tròn. b) Chứng minh rằng: OC EF. 2. Cho tam giác ABC có B C là các góc nhọn và có diện tích không đổi. Tìm giá trị nhỏ nhất của biểu thức 2 2 2 P BC AC AB 2.