Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giữa kỳ 1 Toán 10 năm 2022 - 2023 trường THPT Hương Khê - Hà Tĩnh

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra chất lượng giữa học kỳ 1 môn Toán 10 năm học 2022 – 2023 trường THPT Hương Khê, tỉnh Hà Tĩnh; đề thi được biên soạn theo cấu trúc 70% trắc nghiệm + 30% tự luận, thời gian làm bài 90 phút; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề giữa kỳ 1 Toán 10 năm 2022 – 2023 trường THPT Hương Khê – Hà Tĩnh : + Một công ty TNHH trong một đợt hỗ trợ xây dựng nông thôn mới cần thuê xe để chở ít nhất 120 người và 6,5 tấn hàng. Nơi thuê xe có hai loại xe A và B , trong đó loại xe A có 9 chiếc và loại xe B có 8 chiếc. Một chiếc xe loại A cho thuê với giá 4 triệu đồng, một chiếc xe loại B cho thuê với giá 3 triệu đồng. Biết rằng mỗi chiếc xe loại A có thể chở tối đa 20 người và 0,5 tấn hàng; mỗi chiếc xe loại B có thể chở tối đa 10 người và 2 tấn hàng. Hỏi phải thuê bao nhiêu xe mỗi loại để chi phí bỏ ra là thấp nhất? + Cho mệnh đề: “Nếu tam giác ABC có hai góc bằng 60o thì ABC là một tam giác đều”. Phát biểu mệnh đề trên bằng cách sử dụng khái niệm “điều kiện đủ”. A. Tam giác ABC có hai góc bằng 60o là điều kiện đủ để ABC là một tam giác đều. B. ABC là một tam giác đều là điều kiện cần để tam giác ABC có hai góc bằng 60o. C. ABC là một tam giác đều là điều kiện đủ để tam giác ABC có hai góc bằng 60o. D. Tam giác ABC có hai góc bằng 60o là điều kiện cần để ABC là một tam giác đều. + Trong các phát biểu sau, phát biểu nào không là mệnh đề? A. 5 là một số hữu tỉ. B. Mọi số thực đều có bình phương khác 1. C. Thời tiết hôm nay thật đẹp. D. 6 7.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra giữa HKI môn Toán trường THPT Nguyễn Thị Minh Khai Hà Nội
Nội dung Đề kiểm tra giữa HKI môn Toán trường THPT Nguyễn Thị Minh Khai Hà Nội Bản PDF Đề kiểm tra giữa HKI lớp 10 môn Toán trường THPT Nguyễn Thị Minh Khai – Hà Nội gồm 2 đề: đề trắc nghiệm và đề tự luận. Đề trắc nghiệm gồm 25 câu hỏi, đề tự luận gồm 3 câu hỏi, thời gian làm bài mỗi đề là 45 phút. Trích dẫn đề thi : + Một tia sáng chiếu xiên một góc 45 độ đến điểm O trên bề mặt của một chất lỏng thì bị khúc xạ như hình vẽ bên. Trong mặt phẳng (Oxy) như đã thể hiện trong hình vẽ, gọi y = f(x) là hàm số có đồ thị trùng với đường đi của tia sáng nói trên. Tính f(-2002) + f(2002). A. 4004 B. 2002 C. 0. D. 2002. [ads] + Cho hàm số y = f(x) = -x^2 + 4x – 1 có đồ thị như hình vẽ bên. Xét hàm số y = g(x) = -x^2 + 4|x| – 1 và các kết luận sau: (I). Hàm số y = g(x) đồng biến trên (-∞; 2) (II). Đồ thị hàm số y = g(x) nhận trục tung là trục đối xứng (III). Hàm số y = g(x) có giá trị lớn nhất và không có giá trị nhỏ nhất (IV). Với x ∈ (-3; -2), hàm số y = g(x) nhận giá trị dương Trong các kết luận trên, số kết luận đúng là? A. 2 B. 4. C. 1 D. 3 + Cho hàm số y = x^2 – 2x – 3 1. Khảo sát sự biến thiên và vẽ đồ thị (P) của hàm số trên 2. Chứng minh rằng (P) cắt đường thẳng (d): y = 2x – 7 tại một điểm A duy nhất. Lập phương trình đường thẳng qua A và vuông góc với d 3. Tìm m để phương trình |x^2 – 2x – 3| = m có bốn nghiệm phân biệt
Đề kiểm tra giữa HKI năm học 2017 2018 lớp 10 môn Toán trường THPT chuyên Lương Thế Vinh Đồng Nai
Nội dung Đề kiểm tra giữa HKI năm học 2017 2018 lớp 10 môn Toán trường THPT chuyên Lương Thế Vinh Đồng Nai Bản PDF Đề kiểm tra giữa HKI năm học 2017 – 2018 môn Toán lớp 10 trường THPT chuyên Lương Thế Vinh – Đồng Nai gồm 4 mã đề, mỗi đề gồm 25 câu hỏi trắc nghiệm, thời gian làm bài 45 phút. Đề kiểm tra có đáp án . Trích dẫn đề kiểm tra : + Cho hàm số y = 10x^2 − 20x + 2017. Khẳng định nào sau đây là đúng? A. Hàm số đã cho đồng biến trên (−∞; +∞) B. Hàm số đã cho đồng biến trên (−∞; 1) C. Hàm số đã cho đồng biến trên (1; +∞) D. Hàm số đã cho nghịch biến trên (1; +∞) [ads] + Cho các tập hợp A, B, C được minh họa bằng biểu đồ Ven như hình bên. Phần tô màu xám trong hình là biểu diễn của tập hợp nào sau đây? A. (A\C) ∪ (A\B) B. (A ∪ B) \C C. A ∩ B ∩ C D. (A ∩ B) \C + Cho bốn điểm A, B, C, D. Khẳng định nào sau đây là SAI? A. Điều kiện cần và đủ để vtAB = vtCD là tứ giác ABDC là hình bình hành B. Điều kiện cần và đủ để vtNA = vtMA là N ≡ M C. Điều kiện cần và đủ để vtAB = vt0 là A ≡ B D. Điều kiện cần và đủ để vtAB và vtCD là hai vectơ đối nhau là vtAB + vtCD = vt0
Đề kiểm tra giữa học kỳ I lớp 10 môn Toán năm học 2017 2018 trường THPT Việt Nam Ba Lan Hà Nội
Nội dung Đề kiểm tra giữa học kỳ I lớp 10 môn Toán năm học 2017 2018 trường THPT Việt Nam Ba Lan Hà Nội Bản PDF Đề kiểm tra giữa học kỳ I môn Toán lớp 10 năm học 2017 – 2018 trường THPT Việt Nam – Ba Lan – Hà Nội gồm 4 trang với 50 câu hỏi trắc nghiệm, thời gian làm bài 90 phút. Đề kiểm tra có đáp án .
Đề kiểm tra giữa học kỳ I năm học 2017-2018 lớp 10 môn Toán trường THCS THPT Nguyễn Tất Thành Hà Nội
Nội dung Đề kiểm tra giữa học kỳ I năm học 2017-2018 lớp 10 môn Toán trường THCS THPT Nguyễn Tất Thành Hà Nội Bản PDF Đề kiểm tra giữa học kỳ I năm học 2017-2018 môn Toán lớp 10 trường THCS – THPT Nguyễn Tất Thành – Hà Nội gồm 5 bài toán tự luận, thời gian làm bài 90 phút. Trích dẫn đề kiểm tra : + Lập bảng biến thiên và vẽ đồ thị hàm số y = -x^2 + 2x + 3. + Tìm m để phương trình -x^2 + 2x + 3 = 2m – 1 có 2 nghiệm dương phân biệt. + Trong mặt phẳng tọa độ Oxy cho A(1; -3), B(3; -2), C(-4; 2). 1. Gọi G là trọng tâm tam giác ABC và I là trung điểm của AG. Tìm tọa độ điểm I. 2. Đường thằng BI cắt AC tại K. Chứng minh AK = 1/5AC và tìm tọa độ điểm K. + Tìm a, b ,c biết đồ thị hàm số ax^2 + bx + c = 0 là một đường parabol có đỉnh I(1; -4) và cắt trục hoành Ox tại điểm có hoành độ bằng -1. [ads]