Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu HSG lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Cẩm Thủy Thanh Hoá

Nội dung Đề giao lưu HSG lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Cẩm Thủy Thanh Hoá Bản PDF - Nội dung bài viết Đề giao lưu HSG lớp 7 môn Toán năm 2022-2023 phòng GD ĐT Cẩm Thủy Thanh Hoá Đề giao lưu HSG lớp 7 môn Toán năm 2022-2023 phòng GD ĐT Cẩm Thủy Thanh Hoá Xin chào quý thầy cô giáo và các em học sinh lớp 7! Sytu xin giới thiệu đến quý vị đề giao lưu học sinh giỏi cấp trường môn Toán lớp 7 năm học 2022-2023 của phòng Giáo dục và Đào tạo huyện Cẩm Thủy, tỉnh Thanh Hoá. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một số câu hỏi từ Đề giao lưu HSG Toán lớp 7 năm 2022-2023 phòng GD&ĐT Cẩm Thủy - Thanh Hoá: Số $A$ được chia thành ba phần số tỉ lệ theo $231 : 546$. Biết rằng tổng các bình phương của ba số đó bằng $24309$. Tìm số $A$. Biết $f(x)$ chia cho $x-3$ thì dư $7$; chia cho $x-2$ thì dư $5$; chia cho $(x-3)(x-2)$ được thương là $3x$ và còn dư. Tìm $f(x)$. Cho tam giác $ABC$ có ba góc nhọn ($AB < AC$). Vẽ về phía ngoài tam giác $ABC$ các tam giác đều $ABD$ và $ACE$. Gọi $I$ là giao của $CD$ và $BE$, $K$ là giao của $AB$ và $DC$. a) Chứng minh rằng: $\triangle ADC = \triangle ABE$. b) Chứng minh rằng: $\angle AIC = 60^\circ$. c) Gọi $M$ và $N$ lần lượt là trung điểm của $CD$ và $BE$. Chứng minh rằng $\triangle AMN$ đều. d) Chứng minh rằng $IA$ là phân giác của góc $DIE$. Để xem đầy đủ và chi tiết hơn, quý thầy cô vui lòng tải file Word tại đường link sau.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 7 năm 2015 - 2016 phòng GDĐT Vũ Thư - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi huyện Toán 7 năm 2015 – 2016 phòng GD&ĐT Vũ Thư – Thái Bình; đề thi có đáp án + lời giải chi tiết + hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2015 – 2016 phòng GD&ĐT Vũ Thư – Thái Bình : + Cho tam giác ABC nhọn; vẽ về phía ngoài tam giác ABC các tam giác vuông cân tại A là tam giác ABD và tam giác ACE. a) Chứng minh DC = BE và DC BE. b) Gọi H là chân đường vuông góc kẻ từ A đến ED và M là trung điểm của đoạn thẳng BC. Chứng minh A, M, H thẳng hàng. + Cho tam giác ABC vuông tại A có AB= 3cm; AC= 4cm. Điểm I nằm trong tam giác và cách đều ba cạnh của tam giác ABC. Gọi M là chân đường vuông góc kẻ từ điểm I đến BC. Tính MB. + Tìm hình chữ nhật có kích thước các cạnh là số nguyên sao cho số đo diện tích bằng số đo chu vi.
Đề khảo sát HSG Toán 7 năm 2015 - 2016 phòng GDĐT Ý Yên - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát HSG Toán 7 năm 2015 – 2016 phòng GD&ĐT Ý Yên – Nam Định; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát HSG Toán 7 năm 2015 – 2016 phòng GD&ĐT Ý Yên – Nam Định : + Cho tam giác ABC đều. Trên cạnh AB lấy điểm D sao cho BD AB. Tại D kẻ đường vuông góc với AB cắt cạnh BC tại E. Tại E kẻ đường vuông góc với BC cắt AC tại F. 1) Chứng minh DF AC. Biết trong tam giác vuông cạnh đối diện với góc 0 30 thì bằng nửa cạnh huyền. 2) Chứng minh tam giác DEF đều. 3) Gọi G là trọng tâm của tam giác DEF. Chứng minh GA = GB = GC. + Cho đa thức Q(x) = ax bx cx d với a, b, c, d. Biết Q(x) chia hết cho 3 với mọi. Chứng tỏ các hệ số a, b, c, d đều chia hết cho 3. + Số M được chia thành ba phần tỉ lệ nghịch với 3; 5; 6. Biết rằng tổng các lập phương của ba phần đó là 10728. Hãy tìm số M.
Đề khảo sát HSG huyện Toán 7 năm 2015 - 2016 phòng GDĐT Thái Thụy - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát HSG huyện Toán 7 năm 2015 – 2016 phòng GD&ĐT Thái Thụy – Thái Bình; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề khảo sát HSG huyện Toán 7 năm 2015 – 2016 phòng GD&ĐT Thái Thụy – Thái Bình : + Cho tam giác ABC cân tại A, BH vuông góc AC tại H. Trên cạnh BC lấy điểm M bất kì (khác B và C). Gọi D, E, F là chân đường vuông góc hạ từ M đến AB, AC, BH. a) Chứng minh ∆DBM = ∆FMB. b) Chứng minh khi M chạy trên cạnh BC thì tổng MD + ME có giá trị không đổi. c) Trên tia đối của tia CA lấy điểm K sao cho CK = EH. Chứng minh BC đi qua trung điểm của DK. + Cho f(x) = ax2 + bx + c, với a, b, c thuộc Z. Biết f(-1); f(0); f(1) đều chia hết cho 3. Chứng minh rằng a, b, c đều chia hết cho 3. + Cho đa thức B(x) = 1 + x + x2 + x3 + … + x99 + x100. Tính giá trị của đa thức B(x) tại x = 1/2.
Đề HSG Toán 7 cấp huyện năm 2015 - 2016 phòng GDĐT Sông Lô - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề HSG Toán 7 cấp huyện năm 2015 – 2016 phòng GD&ĐT Sông Lô – Vĩnh Phúc; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề HSG Toán 7 cấp huyện năm 2015 – 2016 phòng GD&ĐT Sông Lô – Vĩnh Phúc : + Cho tam giác ABC cân tại A, BH vuông góc AC tại H. Trên cạnh BC lấy điểm M bất kì (khác B và C). Gọi D, E, F là chân đường vuông góc hạ từ M đến AB, AC, BH. a) Chứng minh ∆DBM = ∆FMB. b) Chứng minh khi M chạy trên cạnh BC thì tổng MD + ME có giá trị không đổi. c) Trên tia đối của tia CA lấy điểm K sao cho CK = EH. Chứng minh BC đi qua trung điểm của DK. + Có sáu túi lần lượt chứa 18, 19, 21, 23, 25 và 34 bóng. Một túi chỉ chứa bóng đỏ trong khi năm túi kia chỉ chứa bóng xanh. Bạn Toán lấy ba túi, bạn Học lấy hai túi. Túi còn lại chứa bóng đỏ. Biết lúc này bạn Toán có số bóng xanh gấp đôi số bóng xanh của bạn Học. Tìm số bóng đỏ trong túi còn lại. + Cho bốn số nguyên dương khác nhau thỏa mãn tổng của hai số bất kì chia hết cho 2 và tổng của ba số bất kì chia hết cho 3. Tính giá trị nhỏ nhất của tổng bốn số này?