Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cương ôn thi THPT QG 2022 môn Toán chuẩn cấu trúc đề minh họa

Nội dung Đề cương ôn thi THPT QG 2022 môn Toán chuẩn cấu trúc đề minh họa Bản PDF - Nội dung bài viết Tài liệu ôn thi THPT Quốc Gia 2022 môn ToánMục lục: Tài liệu ôn thi THPT Quốc Gia 2022 môn Toán Tài liệu này bao gồm 255 trang, được biên soạn bởi Thạc sĩ Toán học Nguyễn Hữu Chung Kiên. Tài liệu được chia thành 28 chuyên đề, mỗi chuyên đề đi theo cấu trúc của 50 câu trắc nghiệm. Ngoài ra, tài liệu còn bao gồm 10 đề thi chuẩn theo cấu trúc đề minh họa môn Toán năm 2022 của Bộ Giáo dục và Đào tạo, cùng với 5 đề thi thử THPT môn Toán từ các trường THPT và Sở Giáo dục và Đào tạo trên cả nước. Mục lục: 1. Hoán vị, chỉnh hợp, tổ hợp 2. Cấp số cộng – Cấp số nhân 3. Xác suất của biến cố 4. Đọc bảng biến thiên, đồ thị 5. Tìm GTLN – GTNN của hàm số trên đoạn 6. Tiệm cận của đồ thị hàm số 7. Khảo sát, nhận dạng hàm số, đồ thị 8. Hàm số lũy thừa, mũ, logarit 9. Phương trình – bất phương trình mũ, logarit 10. Công thức tính nguyên hàm cơ bản 11. Sử dụng tích chất của tích phân 12. Số phức 13. Góc 14. Khoảng cách 15. Thể tích khối đa diện 16. Khối nón 17. Khối trụ 18. Khối cầu 19. Phương pháp tọa độ trong không gian 20. Phương trình mặt phẳng 21. Phương trình đường thẳng 22. Giá trị nguyên thỏa biểu thức mũ, logarit – Vận dụng 23. Phương trình hàm hợp – Vận dụng 24. Max – min số phức – Vận dụng 25. Diện tích hình phẳng – Vận dụng 26. Phương pháp tọa độ trong không gian – Vận dụng 27. Cực trị hàm ẩn – hàm hợp – Vận dụng 28. Hàm đặc trưng 29. Đề thi THPT Quốc Gia 2021 − Lần 2 30. Phát triển đề minh họa 2022 − Đề 1 31. Phát triển đề minh họa 2022 − Đề 2 32. Phát triển đề minh họa 2022 − Đề 3 33. Phát triển đề minh họa 2022 − Đề 4 34. Phát triển đề minh họa 2022 − Đề 5 35. Phát triển đề minh họa 2022 − Đề 6 36. Phát triển đề minh họa 2022 − Đề 7 37. Phát triển đề minh họa 2022 − Đề 8 38. Phát triển đề minh họa 2022 − Đề 9 39. Phát triển đề minh họa 2022 − Đề 10 40. Đề thi thử Sở Giáo dục Hưng Yên 41. Đề thi thử Sở Giáo dục Bà Rịa − Vũng Tàu 42. Đề thi thử Sở Giáo dục Vĩnh Phúc 43. Đề thi thử Sở Giáo dục Hạ Long 44. Đề thi thử Chuyên ĐHSP Hà Nội

Nguồn: sytu.vn

Đọc Sách

Phát triển đề minh họa môn Toán kỳ thi tốt nghiệp THPT 2020
Nội dung Phát triển đề minh họa môn Toán kỳ thi tốt nghiệp THPT 2020 Bản PDF - Nội dung bài viết Phát triển bộ đề minh họa môn Toán kỳ thi tốt nghiệp THPT 2020 Phát triển bộ đề minh họa môn Toán kỳ thi tốt nghiệp THPT 2020 Trong bối cảnh học sinh trở lại trường sau thời gian dài nghỉ học vì dịch bệnh, đặc biệt là học sinh khối 12 đang chuẩn bị cho kỳ thi THPT Quốc gia, tập thể quý thầy cô nhóm Geogebra - Nguyễn Chín Em đã sáng tạo và phát triển bộ đề minh họa môn Toán kỳ thi tốt nghiệp THPT 2020. Bộ tài liệu gồm 218 trang, chứa một loạt câu hỏi và bài tập được xây dựng dựa trên cấu trúc logic, giúp học sinh hiểu rõ, áp dụng kiến thức vào thực tế một cách hiệu quả.
Đề tham khảo THPTQG 2020 môn Toán và các bài toán phát triển theo chủ đề
Nội dung Đề tham khảo THPTQG 2020 môn Toán và các bài toán phát triển theo chủ đề Bản PDF - Nội dung bài viết Đề tham khảo THPTQG 2020 môn Toán và bài toán phát triển Đề tham khảo THPTQG 2020 môn Toán và bài toán phát triển Tài liệu đề tham khảo THPTQG 2020 môn Toán được biên soạn bởi nhóm Strong Team Toán VD – VDC, gồm 105 trang chứa các câu hỏi và bài toán minh họa trong đề thi. Tất cả các bài toán đều được giải chi tiết theo nhiều cách khác nhau, giúp học sinh hiểu rõ hơn về cách giải và rèn luyện kỹ năng ra đề. Tài liệu được chia thành hai phần tùy theo mức độ nhận thức: Phần 1: Mức độ Nhận biết – Thông hiểu từ trang 1 đến trang 68. Phần 2: Mức độ Vận dụng từ trang 69 đến trang 105. Ví dụ về các bài toán trong tài liệu: Cho hình nón đỉnh S có đáy là hình tròn tâm O. Một mặt phẳng cắt hình nón theo thiết diện là tam giác vuông diện tích bằng 4. Tìm thể tích của khối nón. Cho hàm số y = f(x) liên tục trên R, gọi S là tập hợp các giá trị nguyên m để phương trình f(sin x) = 3sinx + m có nghiệm thuộc khoảng (0;π). Tính tổng các phần tử của S. Trong không gian Oxyz, mặt cầu (S) : x^2 + y^2 + z^2 − 4x − 2y + 2z − 3 = 0 và điểm M (4; 2; −2). Điểm M thuộc tâm, trên, trong hay ngoài mặt cầu (S)? Đề tham khảo này không chỉ giúp học sinh ôn tập hiệu quả mà còn phát triển khả năng giải quyết các dạng toán phổ biến trong đề thi THPT Quốc Gia môn Toán.
Phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán
Nội dung Phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán Bản PDF - Nội dung bài viết Phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán: "Dựa trên " Phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán: "Dựa trên " Phát triển đề thi tham khảo THPT Quốc gia 2020 môn Toán dựa trên nền tảng của chương trình học và kiến thức cơ bản trong sách giáo khoa. Đề thi được xây dựng với mục tiêu giúp học sinh rèn luyện kỹ năng giải quyết vấn đề, tư duy logic và phân tích một cách logic và tổng hợp thông tin. Bên cạnh việc đánh giá kiến thức, đề thi cũng tập trung vào việc khuyến khích học sinh phát triển khả năng sáng tạo, tự tin và kiên nhẫn khi giải các bài toán khó. Các câu hỏi trong đề thi không chỉ yêu cầu kiến thức mà còn đòi hỏi học sinh có khả năng áp dụng kiến thức vào các tình huống thực tế và bài toán đa chiều. Với sự phong phú và đa dạng về nội dung, đề thi tham khảo môn Toán sẽ giúp học sinh tự tin và sẵn sàng tham gia kỳ thi quan trọng. Đồng thời, đề thi cũng là công cụ hữu ích giúp giáo viên đánh giá năng lực học sinh và điều chỉnh phương pháp dạy học phù hợp.
Phân tích một số câu vận dụng trong đề minh họa THPTQG 2020 môn Toán
Nội dung Phân tích một số câu vận dụng trong đề minh họa THPTQG 2020 môn Toán Bản PDF - Nội dung bài viết Phân tích các bài toán vận dụng trong đề minh họa THPTQG 2020 môn Toán Phân tích các bài toán vận dụng trong đề minh họa THPTQG 2020 môn Toán Tài liệu được biên soạn bởi thầy giáo Nguyễn Minh Nhiên, bao gồm 39 trang trình bày lời giải chi tiết và phân tích sâu một số bài toán vận dụng cao trong đề minh họa THPT Quốc gia môn Toán năm học 2019 – 2020. Cụ thể, các bài toán được phân tích bao gồm: câu 38, câu 43, câu 46, câu 48, câu 49, và câu 50. Thông qua việc phân tích chi tiết các bài toán này, tài liệu giúp học sinh hiểu rõ hơn về cách tiếp cận và giải quyết các dạng toán vận dụng - vận dụng cao trong các bài toán thực tế.