Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra học kì 2 (HK2) lớp 11 môn Toán năm 2020 2021 trường THPT Lê Trọng Tấn TP HCM

Nội dung Đề kiểm tra học kì 2 (HK2) lớp 11 môn Toán năm 2020 2021 trường THPT Lê Trọng Tấn TP HCM Bản PDF Đề kiểm tra HK2 Toán lớp 11 năm 2020 – 2021 trường THPT Lê Trọng Tấn – TP HCM được biên soạn theo hình thức đề thi tự luận với 02 phần: phần chung gồm 04 bài toán, chiếm 08 điểm, phần riêng gồm 02 bài toán cho mỗi ban (Tự nhiên và Xã hội), chiếm 02 điểm, thời gian làm bài 90 phút.

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 2 Toán 11 năm 2019 - 2020 trường THPT Trần Nhân Tông - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán 11 năm học 2019 – 2020 trường THPT Trần Nhân Tông, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết.
Đề thi học kì 2 Toán 11 năm 2019 - 2020 trường THPT Trần Quang Khải - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán 11 năm học 2019 – 2020 trường THPT Trần Quang Khải, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết.
Đề thi học kì 2 Toán 11 năm 2019 - 2020 trường THCSTHPT Trí Đức - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán 11 năm học 2019 – 2020 trường THCS&THPT Trí Đức, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết.
Đề thi học kì 2 Toán 11 năm 2019 - 2020 trường THPT Trưng Vương - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 11 đề thi học kì 2 Toán 11 năm học 2019 – 2020 trường THPT Trưng Vương, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 11 năm 2019 – 2020 trường THPT Trưng Vương – TP HCM : + Tìm các đạo hàm của các hàm số sau. + Viết phương trình tiếp tuyến với đồ thị (C) của hàm số 3 y x x 3 tại điểm A. + Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân tại B và BC a; SA vuông góc mặt phẳng ABC và SA a 3. a/ Chứng minh: BC SAB. b/ Gọi M là trung điểm của đoạn AC. Chứng minh rằng SBM SAC. c/ Tính góc giữa hai mặt phẳng SBC và SAC. d/ Gọi G là trọng tâm tam giác ABC. Tính khoảng cách từ G đến mặt phẳng SBC.