Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu dạy thêm học thêm chuyên đề tập hợp các số nguyên

Nội dung Tài liệu dạy thêm học thêm chuyên đề tập hợp các số nguyên Bản PDF Tài liệu dạy thêm học thêm chuyên đề tập hợp các số nguyên là một tài liệu hết sức hữu ích dành cho giáo viên và học sinh lớp 6 trong quá trình dạy và học môn Toán. Tài liệu gồm 12 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và cung cấp bài tập chuyên đề về tập hợp các số nguyên.

Phần I của tài liệu là Tóm tắt lý thuyết, trong đó tập trung trình bày những kiến thức cơ bản liên quan đến số nguyên. Các nội dung lý thuyết được tóm gọn và trình bày một cách dễ hiểu, giúp học sinh nắm vững và áp dụng vào việc giải các bài toán.

Phần II của tài liệu là Các dạng bài, bao gồm các dạng bài toán khác nhau về tập hợp các số nguyên. Dạng 1 là việc điền kí hiệu thích hợp vào chỗ trống, trong đó học sinh cần nắm vững cách điền kí hiệu của các tập hợp số, bao gồm tập hợp số tự nhiên, tập hợp số nguyên và các quan hệ giữa chúng. Dạng 2 liên quan đến việc biểu diễn số nguyên trên trục số, với trục số được mô tả và các quy tắc về các điểm trên trục số. Dạng 3 là so sánh hai hay nhiều số nguyên, cung cấp các phương pháp so sánh số nguyên dựa trên biểu diễn trên trục số và các tính chất của số nguyên. Dạng 4 yêu cầu học sinh viết tập hợp số theo hai cách khác nhau, liệt kê các phần tử hoặc chỉ ra các tính chất đặc trưng của tập hợp số. Dạng 5 giới thiệu việc sử dụng số nguyên âm trong thực tế, nhằm giúp học sinh hiểu rõ tác dụng của số nguyên âm trong các tình huống thực tế như nhiệt độ dưới 0C, độ cao dưới mực nước biển, số tiền còn nợ và số tiền lỗ.

Tài liệu được biên soạn chi tiết, cụ thể và dễ hiểu hơn nội dung gốc. Nội dung tóm tắt lý thuyết và phương pháp giải bài tập giúp học sinh nắm vững kiến thức và cải thiện kỹ năng giải toán. Đồng thời, các ví dụ và bài tập chuyên đề cung cấp trong tài liệu giúp học sinh nắm vững và ứng dụng kiến thức vào việc giải các bài toán thực tế. Tài liệu còn giúp giáo viên có thêm tư liệu và hướng dẫn cho quá trình giảng dạy, từ đó tăng cường hiệu quả trong việc truyền đạt kiến thức cho học sinh.

Tóm lại, Tài liệu dạy thêm học thêm chuyên đề tập hợp các số nguyên là một công cụ hữu ích cho giáo viên và học sinh lớp 6, giúp củng cố và nâng cao kiến thức về tập hợp các số nguyên và kỹ năng giải toán. Các phần tóm tắt lý thuyết và bài tập chuyên đề được trình bày một cách dễ hiểu và cụ thể, giúp học sinh nắm vững và áp dụng kiến thức vào thực tế.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề đoạn thẳng và độ dài đoạn thẳng
Tài liệu gồm 18 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề đoạn thẳng và độ dài đoạn thẳng, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 1: Đoạn thẳng. Mục tiêu : Kiến thức: + Nhận biết được khái niệm đoạn thẳng, độ dài đoạn thẳng. Kĩ năng: + Đếm được số đoạn thẳng tạo thành từ các điểm cho trước. + Chỉ ra được tính thẳng hàng và điểm nằm giữa hai điểm. + Tính được độ dài đoạn thẳng sử dụng công thức cộng độ dài đoạn thẳng. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Đếm số đoạn thẳng tạo thành từ các điểm cho trước. Dạng 2 : Xét tính thẳng hàng và điểm nằm giữa hai điểm còn lại. Điểm nằm giữa hai điểm: + Nếu OA và OB là hai tia đối nhau thì O nằm giữa A và B. + Nếu OA và OB là hai tia trùng nhau và OA OB thì A nằm giữa O và B. + Nếu MA MB AB thì M nằm giữa A và B và ngược lại. + Điểm M thuộc đoạn thẳng AB thì M nằm giữa A và B. Dạng 3 : Độ dài đoạn thẳng. Tính độ dài đoạn thẳng: Khi điểm M nằm giữa hai điểm A và B thì MA MB AB và ngược lại. Vẽ đoạn thẳng cho biết độ dài: + Vẽ đoạn thẳng trên tia: Trên tia Ox bao giờ cũng vẽ được một và chỉ một điểm M sao cho OM a (đơn vị độ dài). + Vẽ hai đoạn thẳng trên tia: Trên tia Ox vẽ hai đoạn thẳng OM a ON b. Nếu 0 a b thì điểm M nằm giữa hai điểm O và N.
Chuyên đề tia
Tài liệu gồm 12 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tia, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 1: Đoạn thẳng. Mục tiêu : Kiến thức: + Nhận biết được tia, hai tia đối nhau, hai tia trùng nhau. Kĩ năng: + Vẽ được các tia thỏa mãn điều kiện cho trước. + Dựa vào khái niệm tia, xác định được điểm nằm giữa hai điểm còn lại. I. LÍ THUYẾT TRỌNG TÂM 1. Tia. Định nghĩa: Hình gồm điểm O và một phần đường thẳng bị chia ra bởi điểm O được gọi là một tia gốc O. 2. Hai tia đối nhau. Định nghĩa: Hai tia chung gốc Ox và Oy tạo thành đường thẳng xy được gọi là hai tia đối nhau. Nhận xét: Mỗi điểm trên đường thẳng là gốc chung của hai tia đối nhau. 3. Hai tia trùng nhau. II. CÁC DẠNG BÀI TẬP Dạng 1 : Nhận biết tia, hai tia đối nhau, hai tia trùng nhau. Bài toán 1. Nhận biết tia. + Bước 1. Sử dụng khái niệm một tia để xác định các tia có trong hình. Xác định điểm gốc của tia và phần đường thẳng được chia bởi gốc. + Bước 2. Sử dụng một trong các cách để gọi tên tia. Bài toán 2. Xác định tia đối. + Bước 1. Xác định các điểm trên hình là gốc chung của hai tia đối. + Bước 2. Xác định các tia có chung gốc và tạo thành một đường thẳng. Liệt kê tên các cặp tia đối nhau. Bài toán 3. Xác định tia trùng nhau. + Bước 1. Sử dụng khái niệm về hai tia trùng nhau để xác định trên hình vẽ. + Bước 2. Kể tên các cặp tia trùng nhau. Dạng 2 : Vẽ các tia theo điều kiện cho trước. Dạng 3 : Xác định điểm nằm giữa hai điểm khác.
Chuyên đề đường thẳng đi qua hai điểm
Tài liệu gồm 13 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề đường thẳng đi qua hai điểm, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 1: Đoạn thẳng. Mục tiêu : Kiến thức: + Nhận biết được tiên đề về đường thẳng đi qua hai điểm phân biệt. + Nhận biết được khái niệm hai đường thẳng cắt nhau, song song. Kĩ năng: + Vẽ được đường thẳng đi qua hai điểm. + Đếm được số đường thẳng trên hình vẽ cho trước. I. LÍ THUYẾT TRỌNG TÂM 1. Vẽ và đặt tên đường thẳng. Vẽ đường thẳng: + Vẽ đường thẳng đi qua hai điểm A và B. + Đặt cạnh thước đi qua hai điểm A và B. + Dùng bút chì vạch theo cạnh thước. Có một đường thẳng và chỉ một đường thẳng đi qua hai điểm A và B. Tên đường thẳng: Một đường thẳng có thể được đặt tên bằng: + Một chữ cái in thường. + Tên hai điểm thuộc đường thẳng đó. + Hai chữ cái in thường. 2. Đường thẳng trùng nhau, cắt nhau, song song. Hai đường trùng nhau: Hai đường thẳng AB và AC trùng nhau. Hai đường thẳng cắt nhau: Hai đường thẳng cắt nhau là hai đường thẳng có duy nhất một điểm chung. Hai đường thẳng AB và AC cắt nhau tại A. A là giao điểm của hai đường thẳng đó. Hai đường thẳng song song: Hai đường thẳng song song là hai đường thẳng không có điểm chung. Hai đường thẳng a và b không có điểm chung nào (dù có kéo dài mãi mãi về hai phía). Hai đường thẳng a và b song song với nhau. II. CÁC DẠNG BÀI TẬP Dạng 1 : Đếm số đường thẳng. Có một và chỉ một đường thẳng đi qua hai điểm phân biệt. Hai đường thẳng không trùng nhau được gọi là hai đường thẳng phân biệt. Dạng 2 : Giao điểm của hai đường thẳng cắt nhau. Giao điểm của hai đường thẳng cắt nhau là điểm chung của hai đường thẳng ấy.
Chuyên đề ba điểm thẳng hàng
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề ba điểm thẳng hàng, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 1: Đoạn thẳng. Mục tiêu : Kiến thức: + Nhận biết được ba điểm thẳng hàng, ba điểm không thẳng hàng. + Nhận biết được khái niệm điểm nằm giữa hai điểm. Kĩ năng: + Chỉ ra được điểm nằm giữa hai điểm còn lại. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Nhận biết ba điểm thẳng hàng hay không thẳng hàng. Để nhận biết ba điểm có thẳng hàng hay không, ta thường làm như sau: – Bước 1. Vẽ một đường thẳng đi qua hai trong ba điểm. – Bước 2: + Nếu điểm còn lại nằm trên đường thẳng vừa vẽ thì ba điểm thẳng hàng. + Nếu điểm còn lại không nằm trên đường thẳng vừa vẽ thì ba điểm không thẳng hàng. Dạng 2 : Xác định vị trí giữa ba điểm thẳng hàng. Ba điểm M, N, P thẳng hàng, trong đó: + Điểm M và điểm N nằm cùng phía đối với điểm P. + Điểm N và điểm P nằm cùng phía đối với điểm M. + Điểm M và điểm P nằm khác phía đối với điểm N. + Điểm N nằm giữa hai điểm M và P.